精英家教网 > 高中数学 > 题目详情
10.函数f(x)=log2(2-x)在x∈[0,1]上的最大值为1.

分析 由x的范围求得2-x的范围,再由对数函数的单调性得答案.

解答 解:∵0≤x≤1,∴-1≤-x≤0,则1≤2-x≤2,
∴0≤log2(2-x)≤1.
即函数f(x)=log2(2-x)在x∈[0,1]上的最大值为1.
故答案为:1.

点评 本题考查复合函数值域的求法,考查了对数函数的单调性,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,2a+1]上单调,求实数a的取值范围;
(3)当x∈[-1,1]时,y=f(x)图象恒在y=2x+2m+1的图象上方,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆G:$\frac{{x}^{2}}{4}$+y2=1,过点(0,2)作圆x2+y2=1的切线l交椭圆G于A,B两点,
(1)求椭圆G的焦点坐标和离心率.
(2)O为坐标原点,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=x2+x在区间[1,2]上的平均变化率为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3+alnx
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当a=0时,求曲线y=f(x)过点(1,f(1))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数y=loga(x+3)(a>0,a≠1)的图象过定点A,若点A也在函数f(x)=3x+b的图象上,则f(log32)=$\frac{17}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a,x<1}\\{-{x}^{2}+ax-1,x≥1}\end{array}\right.$是(-∞,+∞)上的减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知命题p:(x+2)(x-10)≤0,命题q:1-m≤x≤1+m,m>0,若?q是?p的必要不充分条件,求实数m的取值范围.
(2)已知命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,命题q:函数f(x)=(3-2a)x是增函数,若p∨q为真,p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知三角形的三边长分别为$a,b,\sqrt{{a^2}+{b^2}+\sqrt{3}ab}$,则三角形的最大内角是(  )
A.60°B.90°C.120°D.150°

查看答案和解析>>

同步练习册答案