精英家教网 > 高中数学 > 题目详情
5.将二进制101 11(2) 化为十进制为23(10);再将该数化为八进制数为27(8)

分析 利用二进制数化为“十进制”的方法可得10111(2)=1×24+0×23+1×22+1×21+1×20=23,再利用“除8取余法”即可得出.

解答 解:二进制数10111(2)=1×24+0×23+1×22+1×21+1×20=23.
23÷8=2…7
2÷8=0…2
可得:23(10)=27(8)
故答案为:23(10),27(8)

点评 本题考查了二进制数化为“十进制”的方法、“除8取余法”,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在[-4,3]上随机取一个数m,能使函数$f(x)={x}^{2}+\sqrt{2}mx+2$在R上有零点的概率为$\frac{3}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π).求tanθ的值.
(2)已知f(α)=$\frac{sin(5π-α)•cos(α+\frac{3π}{2})•cos(π+a)}{sin(α-\frac{3π}{2})•cos(α+\frac{π}{2})•tan(α-3π)}$.化简f(α).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=ax3+bx+9(a,b∈R),且f(-2016)=7,则f(2016)=11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=(1+x)2-2ln(1+x).
(Ⅰ)对任意x0∈[0,1],不等式f(x0)-m≤0恒成立,求实数m的最小值;
(Ⅱ)若存在x0∈[0,1],使不等式f(x0)-m≤0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某射手进行一次射击,射中环数及相应的概率如下表
环数109877以下
概率0.250.30.20.15N
(1)根据上表求N的值(2)该射手射击一次射中的环数小于8环的概率
(3)该射手射击一次至少射中8环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为(  )
A.$\stackrel{∧}{y}$=1.23x+5B.$\stackrel{∧}{y}$=1.23x+4C.$\stackrel{∧}{y}$=0.08x+1.23D.$\stackrel{∧}{y}$=1.23x+0.08

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知p:方程${x^2}+2\sqrt{2}x+m=0$有两个不相等的实数根;q:不等式4x2+4(m-2)x+1>0的解集为R.若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设曲线y=f(x)在某点处的导数值为0,则过曲线上该点的切线(  )
A.垂直于x轴B.垂直于y轴
C.既不垂直于x轴也不垂直于y轴D.方向不能确定

查看答案和解析>>

同步练习册答案