【题目】已知某射击运动员每次击中目标的概率都是,现采用随机模拟的方法估计该运动员射击次至多击中次的概率:先由计算器产生到之间取整数值的随机数,指定、表示没有击中目标,、、、、、、、表示击中目标,因为射击次,故以每个随机数为一组,代表射击次的结果.经随机模拟产生了如下组随机数:
5727 0293 7140 9857 0347 4373 8636 9647 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 6710 4281
据此估计,射击运动员射击4次至多击中3次的概率为( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,圆的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求圆的普通方程和直线的直角坐标方程;
(2)若直线与圆交于两点,是圆上不同于两点的动点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中.
(1)若,求函数的单调区间;
(2)若关于的不等式对任意的实数恒成立,求实数的取值范围;
(3)若函数有个不同的零点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是以为直径的半圆上异于点的点,矩形所在的平面垂直于该半圆所在平面,且
(Ⅰ)求证:;
(Ⅱ)设平面与半圆弧的另一个交点为,
①求证://;
②若,求三棱锥E-ADF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现从某学校高二年级男生中随机抽取名测量身高,测量发现被测学生身高全部介于和之间,将测量结果按如下方式分成组:第组,第组,…,第组,下图是按上述分组方法得到的频率分布直方图.
(1)估计这名男生身高的中位数和平均数;
(2)求这名男生当中身高不低于的人数,若在这名身高不低于的男生中任意抽取人,求这人身高之差不大于的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知(,为此函数的定义域)同时满足下列两个条件:①函数在内单调递增或单调递减;②如果存在区间,使函数在区间上的值域为,那么称,为闭函数;
请解答以下问题:
(1) 求闭函数符合条件②的区间;
(2) 判断函数是否为闭函数?并说明理由;
(3)若是闭函数,求实数的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数满足:,的最小值为1,且在轴上的截距为4.
(1)求此二次函数的解析式;
(2)若存在区间,使得函数的定义域和值域都是区间,则称区间为函数的“不变区间”.试求函数的不变区间;
(3)若对于任意的,总存在,使得,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com