精英家教网 > 高中数学 > 题目详情

已知函数(其中).
(Ⅰ)求函数的极值;
(Ⅱ)若函数在区间内有两个零点,求正实数a的取值范围;(Ⅲ)求证:当时,.(说明:e是自然对数的底数,e=2.71828…)

(Ⅰ)极小值为,无极大值(Ⅱ)(Ⅲ)问题等价于.由(Ⅰ)知的最小值为.设上单调递增,在上单调递减.∴
=,∴,∴,故当时,

解析试题分析:(Ⅰ)
),
,得,由,得
故函数上单调递减,在上单调递增,
所以函数的极小值为,无极大值.  4分
(Ⅱ)函数

,∵,解得,或(舍去),
时,上单调递减;
时,上单调递增.
函数在区间内有两个零点,
只需
故实数a的取值范围是.   9分
(Ⅲ)问题等价于.由(Ⅰ)知的最小值为
上单调递增,在上单调递减.

=
,∴,故当时,.  14分
考点:函数极值最值
点评:求函数极值最值都需要首先找到函数的单调区间,第二问将函数存在零点转化为最值边界值的范围,第三问将不等式恒成立问题转化为求函数最值问题,这两种转化是函数综合题中经常考到的

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数y=
(Ⅰ)求函数y的最小正周期;
(Ⅱ)求函数y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是幂函数且在上为减函数,函数在区间上的最大值为2,试求实数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f (x)=x3(1-a)x2-3ax+1,a>0.
(Ⅰ) 证明:对于正数a,存在正数p,使得当x∈[0,p]时,有-1≤f (x)≤1;
(Ⅱ) 设(Ⅰ)中的p的最大值为g(a),求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)判断的奇偶性;
(2)确定函数上是增函数还是减函数?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知O为坐标原点,

(1)求的单调递增区间;
(2)若的定义域为,值域为[2,5],求m的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知函数y=ln(-x2+x-a)的定义域为(-2,3),求实数a的取值范围;
(2)已知函数y=ln(-x2+x-a)在(-2,3)上有意义,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知yf(x)是定义在R上的奇函数,当x≤0时,f(x)=2xx2.
(1)求x>0时,f(x)的解析式;
(2)若关于x的方程f(x)=2a2a有三个不同的解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时都取得极值
(1)求的值与函数的单调区间
(2)若对,不等式恒成立,求的取值范围。

查看答案和解析>>

同步练习册答案