精英家教网 > 高中数学 > 题目详情
(2012•广州一模)两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作a1=1,第2个五角形数记作a2=5,第3个五角形数记作a3=12,第4个五角形数记作a4=22,…,若按此规律继续下去,则a5=
35
35
,若an=145,则n=
10
10

分析:仔细观察法各个图形中实心点的个数,找到个数之间的通项公式,再求第5个五角星的中实心点的个数及an=145时,n的值即可.
解答:解:第一个有1个实心点,
第二个有1+1×3+1=5个实心点,
第三个有1+1×3+1+2×3+1=12个实心点,
第四个有1+1×3+1+2×3+1+3×3+1=22个实心点,

第n个有1+1×3+1+2×3+1+3×3+1+…+3(n-1)+1=
3n(n-1)
2
+n个实心点,
故当n=5时,
3n(n-1)
2
+n=
3×5×4
2
+5=35个实心点.
若an=145,即
3n(n-1)
2
+n=145,解得n=10
故答案为:35,10.
点评:本题考查了图形的变化类问题,解题的关键是仔细观察每个图形并从中找到通项公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•广州一模)如图所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以a表示.已知甲、乙两个小组的数学成绩的平均分相同.
(1)求a的值;
(2)求乙组四名同学数学成绩的方差;
(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X,求随机变量X的分布列和均值(数学期望).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知函数f(x)=-x3+ax2+b(a,b∈R).
(1)求函数f(x)的单调递增区间;
(2)若对任意a∈[3,4],函数f(x)在R上都有三个零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)设函数f(x)=ex(e为自然对数的底数),gn(x)=1+x+
x2
2!
+
x3
3!
+…+
xn
n!
(n∈N*).
(1)证明:f(x)≥g1(x);
(2)当x>0时,比较f(x)与gn(x)的大小,并说明理由;
(3)证明:1+(
2
2
)1+(
2
3
)2+(
2
4
)3+…+(
2
n+1
)ngn(1)<e
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知
e1
=(
3
,-1)
e2
=(
1
2
3
2
)
,若
a
=
e1
+(t2-3)•
e2
b
=-k•
e1
+t•
e2
,若
a
b
,则实数k和t满足的一个关系式是
t3-3t-4k=0
t3-3t-4k=0
k+t2
t
的最小值为
-
7
4
-
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知平面向量
a
=(1,3)
b
=(-3,x)
,且
a
b
,则
a
b
=(  )

查看答案和解析>>

同步练习册答案