精英家教网 > 高中数学 > 题目详情
已知A、B、C是椭圆M:上的三点,其中点A的坐标为(2,0),BC过椭圆M的中心,且
(1)求椭圆M的方程;
(2)过点(0,t)的直线(斜率存在时)与椭圆M交于两点P、Q,设D为椭圆M与y轴负半轴的交点,且,求实数t的取值范围。
解:(1)∵点A的坐标为(,0),
,椭圆方程为,      ①
又∵,且BC过椭圆M的中心 O(0,0),

又∵
∴△AOC是以∠C为直角的等腰三角形,
易得C点坐标为(),
将()代入①式得
∴椭圆M的方程为
(2)当直线的斜率k=0,直线的方程为y=t,则满足题意的t的取值范围为-2<t<2,
当直线的斜率k≠0时,设直线的方程为y=kx+t,
,得
∵直线与椭圆M交于两点P、Q,
∴△=
,                                       ②
设P(x1,y1),Q(x2,y2),PQ的中点
则H的横坐标, 纵坐标
D点的坐标为(0,-2),
,得DH⊥PQ,
,即,     ③
,∴t>1,                                     ④
由②③得0<t<4,结合④得到1<t<4,
综上所述,t的取值范围是(-2,4)。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A、B、C是椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)
上的三点,其中点A的坐标为(2
3
,0)
,BC过椭圆M的中心,且
AC
BC
=0,|
BC
|=2|
AC
|

(1)求椭圆M的方程;
(2)过点(0,t)的直线l(斜率存在时)与椭圆M交于两点P、Q,设D为椭圆M与y轴负半轴的交点,且|
DP
|=|
DQ
|
,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知A,B,C是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
上的三点,其中点A的坐标为(2
3
,0),BC
过椭圆的中心O,且AC⊥BC,|BC|=2|AC|.
(Ⅰ)求点C的坐标及椭圆E的方程;
(Ⅱ)若椭圆E上存在两点P,Q,使得∠PCQ的平分线总是垂直于x轴,试判断向量
PQ
AB
是否共线,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是椭圆m:
x2
a2
+
y2
b2
=1(a>b>0)上的三点,其中点A的坐标为(2
3
,0),BC过椭圆m的中心,且
AC
BC
=0
,且|
BC
|=2|
AC
|.
(1)求椭圆m的方程;
(2)过点M(0,t)的直线l(斜率存在时)与椭圆m交于两点P,Q,设D为椭圆m与y轴负半轴的交点,且|
DP
|=|
DQ
|.求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知A、B、C是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)上的三点,,BC过椭圆的中心O,且AC⊥BC,|BC|=2|AC|.则椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•北京)已知A,B,C是椭圆W:
x24
+y2=1
上的三个点,O是坐标原点.
(Ⅰ)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;
(Ⅱ)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.

查看答案和解析>>

同步练习册答案