精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,且a>b,a>c.△ABC的外接圆半径为1, ,若边BC上一点D满足BD=2DC,且∠BAD=90°,则△ABC的面积为

【答案】
【解析】解:∵△ABC的外接圆半径R为1, , ∴由正弦定理
可得:sinA=
∵边BC上一点D满足BD=2DC,
且∠BAD=90°,
∴A=120°,∠CAD=30°,
BD= a= ,CD= a=
∴如图,由正弦定理可得: ,可得:b= sin∠2= sin∠1= =c,
∴△BAC是等腰三角形,底角是30°,
∴sinB= ,可得:c=1,
∴SABC= =
所以答案是:

【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0 , 2 )(x0 )是抛物线C上一点.圆M与线段MF相交于点A,且被直线x= 截得的弦长为 |MA|.若 =2,则|AF|等于( )
A.
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)当a=1时,求函数f(x)的单调区间;
(2)若﹣1<x<1时,均有f(x)≤0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某居民小区户主人数和户主对户型结构的满意率分别如图1和图2所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取20%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为(
A.100,8
B.80,20
C.100,20
D.80,8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C: + =1(a>b>0)的左、右焦点分别为F1、F2 , 上顶点为A,过A与AF2垂直的直线交x轴负半轴于Q点,且F1恰好是线段QF2的中点.
(1)若过A、Q、F2三点的圆恰好与直线3x﹣4y﹣7=0相切,求椭圆C的方程;
(2)在(1)的条件下,B是椭圆C的左顶点,过点R( ,0)作与x轴不重合的直线l交椭圆C于E、F两点,直线BE、BF分别交直线x= 于M、N两点,若直线MR、NR的斜率分别为k1 , k2 , 试问:k1k2是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x+ax2+bcosx在点 处的切线方程为
(Ⅰ)求a,b的值,并讨论f(x)在 上的增减性;
(Ⅱ)若f(x1)=f(x2),且0<x1<x2<π,求证:
(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A,B,C所对的边分别为a,b,c,且2sin Acos B=2sin C﹣sin B.
(I)求角A;
(Ⅱ)若a=4 ,b+c=8,求△ABC 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|+|x+3|.
(1)解不等式f(x)≥8;
(2)若不等式f(x)<a2﹣3a的解集不是空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在三棱锥P﹣ABC中,VPABC= ,∠APC= ,∠BPC= ,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱锥P﹣ABC外接球的体积为

查看答案和解析>>

同步练习册答案