精英家教网 > 高中数学 > 题目详情

【题目】2019年1月1日,济南轨道交通号线试运行,济南轨道交通集团面向广大市民开展“参观体验,征求意见”活动,市民可以通过济南地铁APP抢票,小陈抢到了三张体验票,准备从四位朋友小王,小张,小刘,小李中随机选择两位与自己一起去参加体验活动,则小王被选中的概率为( )

A. B. C. D.

【答案】B

【解析】

将所有符合要求的情况全部列出,然后选出符合要求的情况,利用古典概型的概率公式,得到答案.

从四位朋友小王,小张,小刘,小李中随机选择两位,全部的情况有:

(小王,小张)(小王,小刘)(小王,小李)(小张,小刘)(小张,小李)(小刘,小李),共6种

符合要求,即包含小王的情况有:(小王,小张)(小王,小刘)(小王,小李)共3种,

所以小王被选中的概率为

故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是双曲线的右支上一点,分别为双曲线的左右焦点,的内切圆的圆心横坐标为( )

A. B. 2C. D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂销售部以箱为单位销售某种零件,每箱的定价为元,低于箱按原价销售,不低于箱则有以下两种优惠方案:①以箱为基准,每多箱送箱;②通过双方议价,买方能以优惠成交的概率为,以优惠成交的概率为.

甲、乙两单位都要在该厂购买箱这种零件,两单位都选择方案②,且各自达成的成交价格相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;

某单位需要这种零件箱,以购买总价的数学期望为决策依据,试问该单位选择哪种优惠方案更划算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为2的双曲线的一个焦点到一条渐近线的距离为.

(1)求双曲线的方程;

(2)设分别为的左右顶点,异于一点,直线分别交轴于两点,求证:以线段为直径的圆经过两个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年世界服装市场是富有经济活力的一年,某国有企业为了使2019年服装效益更上一层楼,决定进一步深化企业改革、制定好的政策,为此,该企业对某品牌服装2018年1月份~5月份的销售量(万件)与利润(万元)作统计数据如下表:

(1)从这个月的利润(单位:万元)中任选个月,求此个月利润均大于万元且小于万元的概率;

(2)已知销售量(万件)与利润(万元)大致满足线性相关关系,请根据前个月的数据,求出关于的线性回归方程;

(3)若由线性回归方程得到的利润的估计数据与真实数据的误差不超过万元,则认为得到的利润的估计数据是理想的.请用表格中第个月的数据检验由(2)中回归方程所得的第个月的利润的估计数据是否理想.

注:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济实力的不断提升,居民收人也在不断增加。某家庭2018年全年的收入与2014年全年的收入相比增加了一倍,实现翻番.同时该家庭的消费结构随之也发生了变化,现统计了该家庭这两年不同品类的消费额占全年总收入的比例,得到了如下折线图:

则下列结论中正确的是( )

A. 该家庭2018年食品的消费额是2014年食品的消费额的一半

B. 该家庭2018年教育医疗的消费额与2014年教育医疗的消费额相当

C. 该家庭2018年休闲旅游的消费额是2014年休闲旅游的消费额的五倍

D. 该家庭2018年生活用品的消费额是2014年生活用品的消费额的两倍

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求曲线的普通方程和直线的直角坐标方程;

(2)射线的极坐标方程为,若射线与曲线的交点为,与直线的交点为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,MBC顶点的坐标为A(-12)B(1,4)C(32).

(1)ΔABC外接圆E的方程;

(2)若直线经过点(04),且与圆E相交所得的弦长为,求直线的方程;

(3)在圆E上是否存在点P,满足,若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面,底面是正方形,且,中点.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案