精英家教网 > 高中数学 > 题目详情
已知函数y=2sin(
1
2
x+φ)(0<φ<π),图象的一条对称轴是直线x=
3

(Ⅰ)求φ;
(Ⅱ)写出由y=sinx图象变换到y=2sin(
1
2
x+
φ)图象的过程.
考点:函数y=Asin(ωx+φ)的图象变换,正弦函数的图象
专题:三角函数的图像与性质
分析:(Ⅰ)根据其图象的一条对称轴是直线x=
3
,结合0<φ<π,求出φ的值.
(Ⅱ)利用平移规律及图象变换规律即可得到结果.
解答: 解:(Ⅰ)∵x=
3
是函数图象的一条对称轴,
∴sin(
1
2
×
3
+φ)=±1
π
3
+φ=kπ+
π
2
,k∈Z
∵0<φ<π,
∴φ=
π
6

(Ⅱ)由(Ⅰ)知y=2sin(
1
2
x+
π
6
),
故由函数y=sinx的图象向左平移
π
6
个单位,再把纵坐标不变,横坐标伸长2倍,然后把横坐标不变,纵坐标伸长2倍即可.
点评:此题考查了正弦函数的图象与性质以及三角函数的图象变换,熟练掌握公式是解本题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

证明等式(1-tan4A)cos2A+tan2A=1成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列结论:
①当m=-
3
4
时,圆C:(x-1)2+(y-2)2=25倍直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R)截得的弦长最短.
②若方程a2x2+(a+2)y2+2ax+a=0表示圆,则a=-1
③已知△ABC中,顶点A(2,1),B(-1,-1),∠C的平分线所在直线方程为x+2y-1=0,则顶点C的坐标为(
31
5
,-
13
5

④过点P引三条不共面的直线PA,PB,PC,其中∠BPC=90°,∠APC=∠APB=60°,且PA=PB=PC,则平面ABC⊥平面BPC,
其中正确的结论个数是(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知等边三角形的两顶点坐标分别是(x1,y1)、(x2,y2),求第三个顶点的坐标(用含x1,y1,x2,y2)的代数式表示;
(2)已知正方形的两顶点坐标分别是(x1,y1)、(x2,y2),求第三、四顶点的坐标(用含x1,y1,x2,y2)的代数式表示.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在N*上的函数,且f(1)=2,f(x+1)=
f(x)+1
2
,求f(x)的解析式、利用给定的特性求解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+
1
2
x2-(1+a)x.
(1)求函数f(x)的单调区间;
(2)证明:m、n∈N+时,m(m+n)[
1
ln(m+n)
+
1
ln(m+n-1)
+
1
ln(m+n-2)
+…+
1
ln(m+1)
]>n.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角△ABC的内切圆半径为1,则△ABC面积的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2-2|x|-3的单调增区间是(  )
A、(-∞,-1]和[0,1]
B、[1,+∞)
C、[-1,0]和[1,+∞)
D、(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α、β为锐角,cos(2π-α)=
3
5
,cos(π-α-β)=
5
13
,求cosβ的值.

查看答案和解析>>

同步练习册答案