精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆是长轴的一个端点,弦过椭圆的中心O,点C在第一象限,且.

1)求椭圆的标准方程;

2)设PQ为椭圆上不重合的两点且异于AB,若的平分线总是垂直于x轴,问是否存在实数,使得?若不存在,请说明理由;若存在,求的最大值.

【答案】12)存在,的最大值为

【解析】

(1)化简可得出是等腰直角三角形,然后可得出点坐标,带入椭圆方程即可求出

(2)首先由的平分线总是垂直于x轴可得出,然后设出的直线方程,联立消元可求出,然后可算出,进而可表示出并求出的最大值,也就可以得出的最大值.

1)∵,∴

,即

是等腰直角三角形,

而点C在椭圆上,∴,∴

∴所求椭圆方程为.

2)对于椭圆上两点PQ

的平分线总是垂直于x轴,

所在直线关于对称,

,则

,∴的直线方程为,①

的直线方程为,②

将①代入,得,③

在椭圆上,∴是方程③的一个根,

替换k,得到.

,弦过椭圆的中心O

,∴

,∴

∴存实数,使得

时,即时取等号,

的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于函数,下列说法错误的是( )

A. 是奇函数

B. 0不是的极值点

C. 上有且仅有3个零点

D. 的值域是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,且椭圆的一个焦点在圆上.

(1)求椭圆的方程;

(2)已知椭圆的焦距小于,过椭圆的左焦点的直线与椭圆相交于两点,若,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若为曲线的一条切线,求a的值;

(2)已知,若存在唯一的整数,使得,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,平面..M的中点,P的中点,点Q在线段上,且.

1)证明:

2)若二面角的大小为60°,求的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《最强大脑》是江苏卫视引进德国节目《Super Brain》而推出的大型科学竞技真人秀节目,节目筹备组透露挑选选手的方式:不但要对空间感知、照相式记忆进行考核,而且要让选手经过名校最权威的脑力测试,分以上才有机会入围,某重点高校准备调查脑力测试成绩是否与性别有关,在该高校随机抽取男、女学生各名,然后对这名学生进行脑力测试,规定:分数不小于分为“入围学生”,分数小于分为“未入围学生”,已知男生入围人,女生未入围人,

(1)根据题意,填写下面的列联表,并根据列联表判断是否有以上的把握认为脑力测试后是否为“入围学生”与性别有关.

性别

入围人数

未入围人数

总计

男生

24

女生

80

总计

(2)用分层抽样的方法从“入围学生”中随机抽取名学生.

(ⅰ)求这名学生中女生的人数;

(ⅱ)若抽取的女生的脑力测试分数各不相同(每个人的分数都是整数),求这名学生中女生测试分数的平均分的最小值.

附:,其中

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点为抛物线的焦点,过点的直线交抛物线于两点,点在抛物线上,使得的重心轴上,直线轴于点,且在点的右侧.的面积分别.

1)求的值及抛物线的方程;

2)求的最小值及此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若,判断函数的单调性;

(2)讨论函数的极值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱中,平面.

(1)证明:.

(2)求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案