精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知椭圆经过,且右焦点坐标为.

1)求椭圆的标准方程;

2)设AB为椭圆的左,右顶点,C为椭圆的上顶点,P为椭圆上任意一点(异于AB两点),直线AC与直线BP相交于点M,直线BC与直线AP相交于点N,求证:.

【答案】1 2)证明见解析

【解析】

1)由椭圆的定义,可得,又,结合,即得解

(2)设,分别表示直线的方程,联立得到点的坐标,继而证明,即直线斜率不存在,,即,可得为等腰三角形,即得证

1)由题意,椭圆的两个焦点坐标为,记

故椭圆的方程为:

2)设

故:

联立计算可得:

由于

由于在椭圆上,故,即

,即直线斜率不存在

令线段中点为

为等腰三角形

即得证

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,平面多边形中,AE=ED,AB=BD,且,现沿直线,将折起,得到四棱锥.

(1)求证: ;

(2)若,求PD与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新冠肺炎期间某商场开通三种平台销售商品,收集一月内的数据如图1;为了解消费者对各平台销售方式的满意程度,该商场用分层抽样的方法抽取4%的顾客进行满意度调查,得到的数据如图2.下列说法错误的是(

A.样本容量为240

B.若样本中对平台三满意的人数为40,则

C.总体中对平台二满意的消费者人数约为300

D.样本中对平台一满意的人数为24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若直线是曲线的一条切线,求k的值;

2)当时,直线与曲线无交点,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.(其中常数,是自然对数的底数)

1)若,求上的极大值点;

2)()证明上单调递增;

)求关于的方程上的实数解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,已知的平分线,且棱锥的三个侧面与底面都成角,求棱锥的侧面积与体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是(

A.相邻两个节气晷长减少或增加的量为一尺

B.春分和秋分两个节气的晷长相同

C.立冬的晷长为一丈五寸

D.立春的晷长比立秋的晷长短

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】{an}是各项都为整数的等差数列,其前n项和为是等比数列,且.

1)求数列的通项公式;

2)设cnlog2b1+log2b2+log2b3++log2bn .

i)求Tn

ii)求证:2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的右焦点为,左顶点为,线段的中点为,圆过点,且与交于是等腰直角三角形,则圆的标准方程是____________

查看答案和解析>>

同步练习册答案