精英家教网 > 高中数学 > 题目详情
18.如图所示,已知D,E分别为△ABC的边AB,AC的中点,延长CD到M使DM=CD,延长BE至N使BE=EN.求证:M,A,N三点共线.

分析 由题意和三角形全等可得∠EAN+∠DAM+∠BAC=180°,可得结论.

解答 证明:由题意可得AE=EC,BE=EN,∠AEN=∠BEC,
∴△AEN≌△CEB,∴∠EAN=∠ACB;
同理可证△ADM≌△BDC,∴∠DAM=∠ABC,
由三角形的内角和可得∠ACB+∠ABC+∠BAC=180°
∴∠EAN+∠DAM+∠BAC=180°
∴M,A,N三点共线.

点评 本题考查三点共线的证明,涉及三角形全等,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=${4}^{x-\frac{1}{2}}$-m•2x-1(0≤x≤2).
(1)若m=2,求函数f(x)的最大值和最小值;
(2)若f(x)>0对任意x∈[0,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l1:x+my+9=0和直线l2:(m-2)x+3y+3m=0,m为何值时,直线l1与l2
(1)重合;
(2)平行;
(3)垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b.
(1)求这一天的最大温差;
(2)写出这段曲线的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.过点(-1,5),且与直线$\frac{x}{2}$+$\frac{y}{6}$=1垂直的直线方程是x-3y+16=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,底面ABCD为菱形,且PA=PD=DA=2,∠BAD=60°.设AD、PB、PC中点分别为E、F、G.
(Ⅰ)求证:PB⊥AD;
(Ⅱ)求证:EF∥平面PCD;
(Ⅲ)若PB=$\sqrt{6}$,求四面体G-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.△ABC中,点M是边BC的中点,|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=3,则$\overrightarrow{AM}$•$\overrightarrow{BC}$=$-\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.用符号“>”、“>”、“=”填空:
${log}_{{5}^{3}}$<${log}_{{5}^{7}}$;
${log}_{{8}^{1}}$=${log}_{{7}^{1}}$;
${log}_{{\frac{1}{2}}^{5}}$<log${\;}_{\frac{1}{3}}$$\frac{1}{5}$;
ln0.3<0;
${log}_{{0.1}^{2}}$<0;
lg$\frac{1}{3}$<lg10.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北冀州市高二文上月考三数学试卷(解析版) 题型:选择题

已知函数,若互不相等,且,则的取值范围是( )

A.(10,12) B.(5,6)

C.(1,10) D.(20,24)

查看答案和解析>>

同步练习册答案