精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3-ax
a-1
(a≠1).
(1)若a>0,则f(x)的定义域是
 

(2)若f(x)在区间(0,1]上是减函数,则实数a的取值范围是
 
分析:(1)由当a>0且a≠1,再由负数不能开偶次方根,有3-ax≥0求解.
(2)先看分母,当a-1>0,即a>1时,要使“f(x)在(0,1]上是减函数”,则分子t=
3-ax
是减函数,且3-a×1≥0成立;当a-1<0,即a<1时,要“使f(x)在(0,1]上是减函数”则分子t=
3-ax
是增函数,且-a>0成立,两种情况的结果最后取并集.
解答:解:(1)当a>0且a≠1时,由3-ax≥0得x≤
3
a

即此时函数f(x)的定义域是(-∞,
3
a
].
(2)当a-1>0,即a>1时,要使f(x)在(0,1]上是减函数,则需3-a×1≥0,此时1<a≤3.
当a-1<0,即a<1时,要使f(x)在(0,1]上是减函数,则需-a>0,此时a<0.
综上所述,所求实数a的取值范围是(-∞,0)∪(1,3].
故答案为:(1)(-∞,
3
a
];(2)(-∞,0)∪(1,3]
点评:本题主要考查函数的定义域及其单调性的应用,在解题时,要注意复合函数性质的应用及考虑定义域.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,数列an满足an=f(n)(n∈N*),且an是递增数列,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
,若f(x)在区间(0,1]上是减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的图象过点(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)该函数的图象可由函数y=
2
sin4x(x∈R)
的图象经过怎样的变换得出?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|3-
1x
|,x∈(0,+∞)

(1)写出f(x)的单调区间;
(2)是否存在实数a,b(0<a<b)使函数y=f(x)定义域值域均为[a,b],若存在,求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x-
π
3
)=sinx,则f(π)
等于(  )

查看答案和解析>>

同步练习册答案