精英家教网 > 高中数学 > 题目详情
15.已知2sinα+cosα=0,求下列各式的值:
(1)$\frac{2cosα-sinα}{sinα+cosα}$          
(2)$\frac{sinα}{si{n}^{3}α-co{s}^{3}α}$.

分析 利用同角三角函数的基本关系求得tanα的值,从而得到要求式子的值.

解答 解:(1)∵2sinα+cosα=0,∴tanα=-$\frac{1}{2}$,∴$\frac{2cosα-sinα}{sinα+cosα}$=$\frac{2-tanα}{tanα+1}$=$\frac{2-(-\frac{1}{2})}{-\frac{1}{2}+1}$=5.
(2)$\frac{sinα}{si{n}^{3}α-co{s}^{3}α}$=$\frac{sinα}{(sinα-cosα)•{(sin}^{2}α+sinαcosα{+cos}^{2}α)}$=$\frac{sinα}{(sinα-cosα)•(1+sinαcosα)}$
=$\frac{tanα}{(tanα-1)•(1+\frac{sinαcosα}{{sin}^{2}α{+cos}^{2}α})}$=$\frac{tanα}{(tanα-1)•(1+\frac{tanα}{{tan}^{2}α+1})}$=$\frac{-\frac{1}{2}}{(-\frac{1}{2}-1)•(1+\frac{-\frac{1}{2}}{\frac{1}{4}+1})}$=$\frac{5}{3}$.

点评 本题主要考查同角三角函数的基本关系、立方差公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知sinx-cosx=$\frac{1}{5}$(0<x<π),则tanx的值等于(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{4}$或 $\frac{4}{3}$D.-$\frac{3}{4}$或-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某小朋友按如下规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,7中指,8食指,9大拇指,10食指,…一直数到2016时,对应的指头是(  )
A.小指B.中指C.食指D.大拇指

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某产品的广告费用x与销售额y的统计数据如表
广告费用 x(万元)4235
销售额y(万元)49263954
根据上表可得回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中的$\widehat{b}$为10,据此模型预报广告费用为6万元时销售额为67万元.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(n+1)=$\frac{2f(n)}{f(n)+2}$,f(1)=1(n∈N*),猜想f(n)的表达式为f(n)=$\frac{2}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.计算sin5°cos55°-cos175°sin55°的结果是(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.曲线y=xsinx在点P(π,0)处的切线方程是(  )
A.y=-πx+π2B.y=πx+π2C.y=-πx-π2D.y=πx-π2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=cos2ωx-sin2ωx+2$\sqrt{3}$cosωx•sinωx,其中ω>0,若f(x)相邻两条对称轴间的距离不小于$\frac{π}{2}$
(1)求ω的取值范围及函数f(x)的单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,a=$\sqrt{3}$,b+c=3,当ω最大时,f(A)=1,求sinB•sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.三棱柱ABC-A1B1C1中,△ABC是等边三角形,AA1⊥底面ABC,AB=2,AA1=$\sqrt{2}$,则异面直线AC1与B1C所成的角的大小是(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

同步练习册答案