精英家教网 > 高中数学 > 题目详情
20.若偶函数y=f(x),x∈R,满足f(x+2)=-f(x),且x∈[0,2]时,f(x)=3-x2,则方程f(x)=sin|x|在[-10,10]内的根的个数为(  )
A.12B.10C.9D.8

分析 确定函数y=f(x)(x∈R)是周期为4函数,再作出函数的图象,即可得出结论.

解答 解:因为f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x)
所以函数y=f(x)(x∈R)是周期为4函数,
因为x∈[0,2]时,f(x)=3-x2,所以作出它的图象,则y=f(x)的图象如图所示:(注意拓展它的区间)
再作出函数f(x)=sin|x|在[-10,10]内的图象,
∴方程f(x)=sin|x|在[-10,10]内的根的个数为10,
故选:B.

点评 本题考查函数的周期性,考查学生的作图能力,正确作出函数的图象是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.如图,已知四边形ABCD是圆内接四边形,且∠BCD=120°,AD=2,AB=BC=1.现有以下结论:
①B,D两点间的距离为$\sqrt{3}$;
②AD是该圆的一条直径;
③CD=$\frac{\sqrt{3}}{2}$;
④四边形ABCD的面积S=$\frac{3\sqrt{3}}{4}$.
其中正确的个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=\frac{4x}{{3{x^2}+3}}$,函数$g(x)=\frac{1}{3}a{x^3}-{a^2}x(a≠0)$,若对任意x1∈[0,2],总存在x2∈[0,2],使f(x1)=g(x2),则实数a的取值范围是(  )
A.(0,+∞)B.$[\frac{1}{3},1]$C.$[\frac{1}{3},+∞)$D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列判断正确命题的个数为(  )
①“am2<bm2”是“a<b”的充要条件
②命题“若q则p”与命题“若非p则非q”互为逆否命题
③对于命题p:?x∈R,使得x2+x+1<0,则¬p为?x∈R,均有x2+x+1≥0
④命题“∅⊆{1,2}或4∉{1,2}”为真命题.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|3≤x<6},B={y|y=($\frac{1}{2}$)x,-2<x≤-1}.
(1)分别求A∩B,∁R(B∪A).
(2)已知C={x|2a-1<x<a+1},若C⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数y=x2与函数y=xlnx在(0,+∞)上增长较快的是y=x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知∠AOB在平面α内,P∉α,且∠POA=∠POB,PH⊥α于H,求证:0H平分∠A0B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果关于x的不等式f(x)<0和g(x)<0的解集分别为(a,b)和($\frac{1}{b},\frac{1}{a}$),那么称这两个不等式为“对偶不等式”.如果关于x的两个不等式x2+(2m+10)x+2<0与2x2+mx+1<0为“对偶不等式”,则实数m=-10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)-f(x)=2x-1
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当x∈[-1,2]时,求函数的最大值和最小值.

查看答案和解析>>

同步练习册答案