精英家教网 > 高中数学 > 题目详情
(2011•静海县一模)已知函数f(x)=
|log
1
2
x|,0<x≤2
-2x+5,x>2
,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是(  )
分析:先作出函数的图象,结合图象先判断a,b,c的取值范围和对应关系.然后去判断abc的取值范围.
解答:解:先作出函数f(x)的图象如图:
因为a,b,c大小不相等,不妨设a<b<c.由-2x+5=0,解得x=
5
2
.因为f(a)=f(b)=f(c),
所以由图象可知,0<a<1,1<b<2,2<c<
5
2
.由.f(a)=f(b),
|log?
1
2
a|=|log?
1
2
b|
,即-log?
1
2
a=log?
1
2
b
,所以log?
1
2
a+log?
1
2
b=log?
1
2
ab=0

解得ab=1.所以abc=c∈(2,
5
2
),所以abc的取值范围是(2,
5
2
),选C.
故选C.
点评:本题考查函数对数函数的图象与性质,以及根据函数与方程的关系求参数的取值范围问题.利用数形结合思想是解决这类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•静海县一模)已知
OB
=(2,0), 
OC
=(2,2), 
CA
=(2,1)
,则
OA
OB
夹角的正弦值为
3
5
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•静海县一模)已知正项数列{an}的前n项和为Sn
Sn
1
4
(an+1)2的等比中项.
(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)若b1=a1,且bn=2bn-1+3,求数列{bn}的通项公式;
(Ⅲ)在(Ⅱ)的条件下,若cn=
an
bn+3
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•静海县一模)在△ABC中,角A,B,C所对的边分别为a,b,c,若a=
2
,b=2,sinB-cosB=
2
,则角A的大小为
π
6
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•静海县一模)已知函数f(x)=
x2+1 (x≥0)
1 (x<0)
则满足不等式f(1-x2)>f(2x)的x的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•静海县一模)在△ABC中,角A,B,C所对的边分别为a,b,c,若a=
2
,b=2,sinB+cosB=
2
,则角A的大小为(  )

查看答案和解析>>

同步练习册答案