精英家教网 > 高中数学 > 题目详情
19.设α、β都是锐角,$cosα=\frac{1}{7},cos(α+β)=\frac{{5\sqrt{3}}}{14}$,请问cosβ是否可以求解,若能求解,求出答案,若不能求解简述理由不满足余弦函数的单调性.

分析 由条件利用余弦函数的单调性,得出结论.

解答 解:∵α为锐角,α+β∈(0,π),α<α+β,∵y=cosx在(0,π)上递减,∴cos(α+β)<cosα,
而已知cos(α+β)=$\frac{5\sqrt{3}}{14}$>cosα=$\frac{1}{7}$,所以条件错误,故cosβ不可解,
故答案为:不满足余弦函数的单调性.

点评 本题主要考查余弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如图,已知双曲线C的右焦点为F,过它的右顶点A作实轴的垂线,与其一条渐近线相交于点B;若双曲线C的焦距为4,△OFB为等边三角形(O为坐标原点,即双曲线C的中心),则双曲线C的方程为${x^2}-\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在正方体ABCD-A′B′C′D'′中,O是B′D′的中点.
(1)M、N分别是棱AB、B′C′的中点,求证:MN∥面AA′O.
(2)在线段AO上是否存在一点E,使得面A′EB′⊥面AOB′,若存在,请确定E点位置.;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A、B、C的对边分别为a、b、c,$\overrightarrow{AB}•\overrightarrow{AC}=\frac{{2\sqrt{3}}}{3}{S_{△ABC}}$.
(1)求角A的大小;
(2)若a=4,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合M={x|x2-2x-3≤0},N={x|y=lgx},则M∩N=(0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知四边形ABCD是矩形,AB=1,BC=2,PD⊥平面ABCD,且PD=3,PB的中点E,求异面直线AE与PC所成角的大小.(用反三角表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数$f(x)=\left\{\begin{array}{l}cos\frac{π}{2}x,0≤x≤4\\{log_{\frac{1}{4}}}(x-3)+1,x>4\end{array}\right.$,若实数a、b、c互不相等,且满足f(a)=f(b)=f(c),则a+b+c的取值范围是(8,23).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=ax3+bx+1在x=1处有极大值2,则b-a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知两点A(1,2),B(4,-2),则与向量$\overrightarrow{AB}$共线的单位向量$\overrightarrow{e}$是(  )
A.(3,-4)B.(3,-4),(-3,4)C.($\frac{3}{5}$,一$\frac{4}{5}$)D.($\frac{3}{5}$,一$\frac{4}{5}$),(一$\frac{3}{5}$,$\frac{4}{5}$)

查看答案和解析>>

同步练习册答案