精英家教网 > 高中数学 > 题目详情

【题目】某大学高等数学老师这学期分别用两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图:

)依茎叶图判断哪个班的平均分高?

)现班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;

)学校规定:成绩不低于85分的为优秀,请填写下面的列联表,并判断能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?

甲班

乙班

合计

优秀

不优秀

合计

下面临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:其中

【答案】)甲班高等数学成绩集中于60-90分之间,而乙班数学成绩集中于80-100分之间,所以乙班的平均分高.

;

)在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关。

【解析】

试题分析:)甲班高等数学成绩集中于60-90分之间,而乙班数学成绩集中于80-100分之间,所以乙班的平均分高 3分

)记成绩为86分的同学为,其他不低于80分的同学为

从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学的一切可能结果组成的基本事件有:

一共15个,

抽到至少有一个86分的同学所组成的基本事件有:共9个, 5分

7分

甲班

乙班

合计

优秀

3

10

13

不优秀

17

10

27

合计

20

20

40

9分

,因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关。 12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:(x+1)(x-5)≤0,命题q:1-mx<1+m(m>0).

(1)pq的充分条件,求实数m的取值范围;

(2)m=5,如果pq有且仅有一个真命题,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxgx)分别是定义在R上的偶函数和奇函数,且fx+gx=23x

1)证明:fx-gx=23-x,并求函数fx),gx)的解析式;

2)解关于x不等式:gx2+2x+gx-4)>0

3)若对任意xR,不等式f2x)≥mfx-4恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响,已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用表示该学生选修的课程门数和没有选修的课程门数的乘积.

1)记函数上的偶函数为事件,求事件的概率;

2)求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小区内有一块以为圆心半径为20米的圆形区域.广场,为丰富市民的业余文化生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形区域,其中两个端点分别在圆周上;观众席为梯形内且在圆外的区域,其中,且在点的同侧.为保证视听效果,要求观众席内每一个观众到舞台处的距离都不超过60米.设.

(1)求的长(用表示);

(2)对于任意,上述设计方案是否均能符合要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生喜欢校内、校外开展活动的情况,某中学一课外活动小组在学校高一年级进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了200名学生的问卷成绩(单位:分)进行统计,将数据按分成五组,绘制的频率分布直方图如图所示,若将不低于60分的称为类学生,低于60分的称为类学生.

(1)根据已知条件完成下面列联表,能否在犯错误的概率不超过的前提下认为性别与是否为类学生有关系?

合计

110

50

合计

(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中类学生的人数为,若每次抽取的结果是相互独立的,求的分布列、期望和方差.

参考公式:,其中.

参考临界值:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|﹣ x,(a>0). (Ⅰ)若a=3,解关于x的不等式f(x)<0;
(Ⅱ)若对于任意的实数x,不等式f(x)﹣f(x+a)<a2+ 恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,三边a,b,c所对的角分别为A,B,C,设函数f(x)=sin2x+cos2x,且f()=2.
(1)若acosB+bcosA=csinC,求角B的大小;
(2)记g(λ)=||,若||=||=3,试求g(λ)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的通项为an=log(n+1)(n+2)(n∈N*),我们把使乘积a1a2a3…an为整数的n叫做“优数”,则在(0,2015]内的所有“优数”的和为(  )
A.1024
B.2012
C.2026
D.2036

查看答案和解析>>

同步练习册答案