已知椭圆C的中心在原点,一个焦点F(-2,0),且长轴长与短轴长的比为,
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,设点P是椭圆上的任意一点,若当最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.
(1)(2)
解析试题分析:
(1)根据椭圆的中心在原点可以设出椭圆的标准方程,已知焦点坐标,故可求的c值,所以利用长轴长与短轴长之比和a,b,c的关系可以建立关于a,b的两个方程式联立消元即可求的a,b的值,得到椭圆的标准方差.(2)根据题意设点P的坐标,表示,利用点P在椭圆上,得到关于m和P点横坐标的表达式,利用二次函数最值问题,可以得到取得最小值时,m和P点横坐标之间的关系,再利用P横坐标的范围得到m的取值范围即可.
试题解析:
(1)设椭圆的方程为. 1分
由题意有:, 3分
解得. 5分
故椭圆的方程为. 6分
(2)设为椭圆上的动点,由于椭圆方程为,故. 7分
因为,所以
10分
因为当最小时,点恰好落在椭圆的右顶点,即当时,
取得最小值.而,
故有,解得. 12分
又点在椭圆的长轴上,即. 13分
故实数的取值范围是. 14分
考点:椭圆标准方程椭圆几何性质最值
科目:高中数学 来源: 题型:解答题
已知双曲线的中心在原点,离心率为2,一个焦点为F(-2,0).
(1)求双曲线方程;
(2)设Q是双曲线上一点,且过点F,Q的直线l与y轴交于点M,若= 2,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的左右焦点分别为、,短轴两个端点为、,且四边形是边长为2的正方形.
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点,证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆E:的离心率为,过左焦点且斜率为的直线交椭圆E于A,B两点,线段AB的中点为M,直线:交椭圆E于C,D两点.
(1)求椭圆E的方程;
(2)求证:点M在直线上;
(3)是否存在实数k,使得三角形BDM的面积是三角形ACM的3倍?若存在,求出k的值;
若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆的右焦点与抛物线的焦点重合,过且于x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且
(1)求椭圆的标准方程;
(2)设P为椭圆上一点,若过点M(2,0)的直线与椭圆相交于不同两点A和B,且满足(O为坐标原点),求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆经过点,其左、右顶点分别是、,左、右焦点分别是、,(异于、)是椭圆上的动点,连接交直线于、两点,若成等比数列.
(1)求此椭圆的离心率;
(2)求证:以线段为直径的圆过点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点.
(1)求椭圆的方程;
(2)直线与椭圆相交于、两点, 为原点,在、上分别存在异于点的点、,使得在以为直径的圆外,求直线斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,圆C:(x+1)2+y2=16,点F(1,0),E是圆C上的一个动点,EF的垂直平分线PQ与CE交于点B,与EF交于点D.
(1)求点B的轨迹方程;
(2)当点D位于y轴的正半轴上时,求直线PQ的方程;
(3)若G是圆C上的另一个动点,且满足FG⊥FE,记线段EG的中点为M,试判断线段OM的长度是否为定值?若是,求出该定值;若不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com