精英家教网 > 高中数学 > 题目详情

【题目】随着生活节奏的加快以及智能手机的普及,外卖点餐逐渐成为越来越多用户的餐饮消费习惯,由此催生了一批外卖点餐平台已知某外卖平台的送餐费用与送餐距离有关(该平台只给5千米范围内配送),为调査送餐员的送餐收入,现从该平台随机抽取80名点外卖的用户进行统计,按送餐距离分类统计结果如下表:

以这80名用户送餐距离位于各区间的频率代替送餐距离位于该区间的概率

(1)若某送餐员一天送餐的总距离为120千米,试估计该送餐员一天的送餐份数;(四舍五入精确到整数)

(2)若该外卖平台给送餐员的送餐费用与送餐距离有关,规定2千米内为短距离,每份3元,2千米到4千米为中距离,每份5元,超过4千米为远距离,每份10

(i)X为送餐员送一份外卖的收入(单位:元),求X的分布列和数学期望;

(ii)若送餐员一天的目标收入不低于180元,试估计一天至少要送多少份外卖?

【答案】(1)51;(2)(i)4.7;(ii)39

【解析】

(1)直接求出平均送餐距离,然后求出平均送餐分数即可。

(2)(i)确定X的取值,分别求出其概率,然后列出分布列,求出期望值。

(ii)利用期望值,根据收入不低于180元直接计算出送出分数即可。

(1)估计每名外卖用户的平均送餐距离为:

=2.35千米

所以送餐距离为120千米,送餐份数为:份;

(2)(Ⅰ)由题意知X的可能取值为:3,5,10

所以X的分布列为:

X

3

5

10

P

所以E(X)=

(3)180÷

所以估计一天至少要送39份外卖。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“既要金山银山,又要绿水青山”。某风景区在一个直径米的半圆形花圆中设计一条观光线路。打算在半圆弧上任选一点(与不重合),沿修一条直线段小路,在路的两侧(注意是两侧)种植绿化带;再沿弧修一条弧形小路,在小路的一侧(注意是一侧)种植绿化带,小路与绿化带的宽度忽略不计。

(1)设(弧度),将绿化带的总长度表示为的函数

(2)求绿化带的总长度的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且.

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,试确定此二次函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的方程为,直线过定点,斜率为为何值时,直线与抛物线

1)只有一个公共点;

2)有两个公共点;

3)没有公共点?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对定义在[01]上,并且同时满足以下两个条件的函数fx)称为G函数.

对任意的x∈[01],总有fx≥0

x1≥0x2≥0x1+x2≤1时,总有fx1+x2≥fx1+fx2)成立.已知函数gx=x2hx=2xb是定义在[01]上的函数.

1)试问函数gx)是否为G函数?并说明理由;

2)若函数hx)是G函数,求实数b组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),若以直角坐标系中的原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为为实数.

1)求曲线的普通方程和曲线的直角坐标方程;

2)若曲线与曲线有公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中的导函数.

.

1)求的表达式;

2)求证:,其中nN*.

查看答案和解析>>

同步练习册答案