精英家教网 > 高中数学 > 题目详情
14.已知x与y之间的一组数据:
x34557
y24568
则y与x的线性回归方程为y=bx+a必过(  )
A.(5,5)B.(4.5,5)C.(4.8,5)D.(5,6)

分析 要求y与x的线性回归方程为y=bx+a必过的点,需要先求出这组数据的样本中心点,根据所给的表格中的数据,求出横标和纵标的平均值,得到样本中心点,得到结果.

解答 解:由$\overline{x}$=$\frac{1}{5}$(3+4+5+5+7)=4.8,
$\overline{y}$=$\frac{1}{5}$(2+4+5+6+8)=5,
故线性回归方程过(4.8,5),
故选:C.

点评 本题考查线性回归方程必过样本中心点,这是一个基础题,题目的运算量不大,本题是一个只要认真就能够得分的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=(x2+ax+b)(ex-e),a,b∈R,当x>0时,f(x)≥0,则实数a的取值范围为(  )
A.-2≤a≤0B.-1≤a≤0C.a≥-1D.0≤a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.命题p:甲的数学成绩不低于100分,命题q:乙的数字成绩低于100分,则p∨(¬q)表示(  )
A.甲、乙两人数学成绩都低于100分
B.甲、乙两人至少有一人数学成绩低于100分
C.甲、乙两人数学成绩都不低于100分
D.甲、乙两人至少有一人数学成绩不低于100分

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,∠A=90°,AB=2,AC=4,E,F分别为AB,BC的中点,则$\overrightarrow{CE}•\overrightarrow{AF}$=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=alnx+$\frac{b}{x}$+1,曲线y=f(x)在点(1,2)处切线平行于x轴.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当x>1时,不等式(x-1)f(x)>(x-k)lnx恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:
表1:男生
等级优秀合格尚待改进
频数15x5
表2:女生
等级优秀合格尚待改进
频数153y
(1)求出表中的x,y
(2)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,F1、F2是双曲线$\frac{x^2}{9}-\frac{y^2}{b^2}=1(b>0)$的左、右焦点,过F1的直线l与双曲线分别交于点A、B,若△ABF2为等边三角形,则△BF1F2的面积为(  )
A.$8\sqrt{3}$B.$9\sqrt{3}$C.$18\sqrt{3}$D.$27\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.给出下列说法,其中正确的个数是(  )
①命题“?x∈R,x2+x+1>0”的否定是:“?x0∈R,x02+x0+1≤0”;
②命题“若x=y,则sinx=siny”的否命题是:“若x=y,则sinx≠siny”;
③“7<k<9”是“方程$\frac{{x}^{2}}{k-4}$+$\frac{{y}^{2}}{10-k}$=1表示焦点在x轴上的椭圆”的充分不必要条件;
④“m=2”是“l1:2x+(m+1)y+4=0与l2:mx+3y-2=0平行”的充要条件.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图是一个棱锥的三视图,则此棱锥的体积为$\frac{8}{3}$,表面积为4$\sqrt{2}$+6+2$\sqrt{3}$.

查看答案和解析>>

同步练习册答案