【题目】某石化集团获得了某地深海油田区块的开发权,集团在该地区随机初步勘探了部分几口井,取得了地质资料,进入全面勘探时期后,集团按网络点来布置井位进行全面勘探,由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见如表:
(参考公式和计算结果: , , , )
(1)1~6号井位置线性分布,借助前5组数据(坐标)求得回归直线方程为,求的值,并估计的预报值;
(2)现准备勘探新井,若通过1,3,5,7号并计算出的(, 精确到0.01),设, ,当均不超过10%时,使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?
(3)设出油量与勘探深度的比值不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数的分布列与数学期望.
【答案】(1)答案见解析;(2)使用位置最接近的已有旧井.(3)答案见解析.
【解析】试题分析:
(1)根据表中的数据,求得,得到样本中心,代入回归方程,即可求解,得出回归方程,再代入时,求得的值即可;
(2)代入公式,求得的值,求得的值,即可作出结论;
(3)由题意,得出优质井和非优质井,进而得到的取值,求得随机变量的分别列,求解期望即可.
试题解析:
(1)因为, .
回归直线必过样本中心点,则.
故回归直线方程为,
当时, ,即的预报值为24.
(2)因为, , , ,
所以 ,
,
即, , , ., ,均不超过10%,因此使用位置最接近的已有旧井.
(3)由题意,1,3,5,6这4口井是优质井,2,4这两口井是非优质井,
所以勘察优质井数的可能取值为2,3,4,
, ,
.
X | 2 | 3 | 4 |
P |
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c. (Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面积为 ,求△ABC的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x2+x+m)ex(其中m∈R,e为自然对数的底数).若在x=﹣3处函数f (x)有极大值,则函数f (x)的极小值是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和Sn , 且a3=7,S11=143, (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2 +2n,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设(x+2)n=a0+a1x+a2x2+…+anxn(n∈N*,n≥2),且a0 , a1 , a2成等差数列.
(1)求(x+2)n展开式的中间项;
(2)求(x+2)n展开式所有含x奇次幂的系数和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若△ABC的内角A,B,C的对边分别为a,b,c,已知c=2,C= .
(1)若b= ,求角B;
(2)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一次考试中,五位学生的数学,物理成绩如下表所示:
(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;
(2)根据上表数据,画出散点图并用散点图说明物理成绩与数学成绩之间线性相关关系的强弱,如果具有较强的线性相关关系,求与的线性回归方程(系数精确到0.01);如果不具有线性相关关系,请说明理由.
参考公式:
回归直线的方程是,其中, ,
是与对应的回归估计值,
参考数据: , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长为2的线段A B两端点A和B分别在x轴和y轴上滑动,线段AB的中点M的轨迹为曲线C. (Ⅰ)求曲线C的方程;
(Ⅱ)点P(x,y)是曲线C上的动点,求3x﹣4y的取值范围;
(Ⅲ)已知定点Q(0, ),探究是否存在定点T(0,t)(t )和常数λ满足:对曲线C上任意一点S,都有|ST|=λ|SQ|成立?若存在,求出t和λ;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某中学举行的物理知识竞赛中,将三个年级参赛学生的成绩在进行整理后分成5组,绘制出如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组.已知第三小组的频数是15.
(1)求成绩在50~70分的频率是多少;
(2)求这三个年级参赛学生的总人数是多少;
(3)求成绩在80~100分的学生人数是多少.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com