精英家教网 > 高中数学 > 题目详情
设p:|4x-3|≤1;q:x2-(2a+1)x+a(a+1)≤0.若¬p是¬q的必要而不充分条件,求实数a的取值范围.
分析:根据绝对值的性质和十字相乘法分别求出命题p和q,再根据¬p是¬q的必要而不充分条件,可以推出p⇒q,再根据子集的性质进行求解;
解答:解:∵p:|4x-3|≤1;q:x2-(2a+1)x+a(a+1)≤0,
∴p:-1≤4x-3≤1,解得{x|
1
2
≤x≤1},q:{x|a≤x≤a+1},
∵¬p是¬q的必要而不充分条件,
∴¬q⇒¬p,¬p推不出¬q,可得p⇒q,q推不出p,
a+1≥1
a≤
1
2
解得0≤a≤
1
2
,验证a=0和a=
1
2
满足题意,
∴实数a的取值范围为:a∈[0,
1
2
];
点评:本题考查充分条件必要条件的定义及绝对值的性质,确定两个条件之间的关系,本题求解中涉及到了一元二次方程有根的条件,及集合间的包含关系,有一定的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设p:|4x-3|≤1;q:x2-(2a+1)x+a(a+1)≤0.若┐p是┐q的必要而不充分条件,则实数a的取值范围是(  )
A、[0,
1
2
]
B、(0,
1
2
C、(-∞,0]∪[
1
2
,+∞)
D、(-∞,0)∪(
1
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:|4x-3|≤1;q:(x-a)(x-a-1)≤0,若p是q的充分不必要条件,则实数a的取值范围是
[0,
1
2
]
[0,
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:|4x-3|≤1,q:x2-(2a+1)x+a(a+1)≤0,若p是q的充分而不必要条件,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省本溪一中高三(上)第二次月考数学试卷(理科)(解析版) 题型:选择题

设p:|4x-3|≤1;q:x2-(2a+1)x+a(a+1)≤0.若┐p是┐q的必要而不充分条件,则实数a的取值范围是( )
A.[0,]
B.(0,
C.(-∞,0]∪[,+∞)
D.(-∞,0)∪(,+∞)

查看答案和解析>>

同步练习册答案