【题目】已知函数,则下列命题中正确命题的个数是( )
①函数在上为周期函数
②函数在区间,上单调递增
③函数在()取到最大值,且无最小值
④若方程()有且仅有两个不同的实根,则
A.个B.个C.个D.个
科目:高中数学 来源: 题型:
【题目】在我们的教材必修一中有这样一个问题,假设你有一笔资金,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报元;
方案二:第一天回报元,以后每天比前一天多回报元;
方案三:第一天回报元,以后每天的回报比前一天翻一番.
记三种方案第天的回报分别为,,.
(1)根据数列的定义判断数列,,的类型,并据此写出三个数列的通项公式;
(2)小王准备做一个为期十天的短期投资,他应该选择哪一种投资方案?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,
(1)求当在处的切线的斜率最小时,的解析式;
(2)在(1)的条件下,是否总存在实数m,使得对任意的,总存在,使得成立?若存在,求出实数m的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知在极坐标系中,点,,是线段的中点,以极点为原点,极轴为轴的正半轴,并在两坐标系中取相同的长度单位,建立平面直角坐标系,曲线的参数方程是(为参数).
(1)求点的直角坐标,并求曲线的普通方程;
(2)设直线过点交曲线于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx,a∈R.
(1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若x>1时,f(x)>0,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com