【题目】已知直线l:x﹣y=1与圆Γ:x2+y2﹣2x+2y﹣1=0相交于A,C两点,点B,D分别在圆Γ上运动,且位于直线l的两侧,则四边形ABCD面积的最大值为( )
A.
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用,已知每服用且克的药剂,药剂在血液中的含量克随着时间小时变化的函数关系式近似为,其中.
若病人一次服用9克的药剂,则有效治疗时间可达多少小时?
若病人第一次服用6克的药剂,6个小时后再服用3m克的药剂,要使接下来的2小时中能够持续有效治疗,试求m的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+x﹣ln(x+a)+3b在x=0处取得极值0. (Ⅰ)求实数a,b的值;
(Ⅱ)若关于x的方程f(x)= x+m在区间[0,2]上恰有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =( sin ,1), =(cos ,cos2 ). (Ⅰ)若 =1,求cos( ﹣x)的值;
(Ⅱ)记f(x)= ,在△ABC中,A、B、C的对边分别为a、b、c,且满足(2a﹣c)cosB=bcosC,求函数f(A)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区2011年至2017年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求样本中心点坐标;
(2)已知两变量线性相关,求y关于t的线性回归方程;
(3)利用(2)中的线性回归方程,分析2011年至2017年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2019年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知不等式|x+3|<2x+1的解集为{x|x>m}. (Ⅰ)求m的值;
(Ⅱ)设关于x的方程|x﹣t|+|x+ |=m(t≠0)有解,求实数t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com