精英家教网 > 高中数学 > 题目详情
13.(1)若2a=5b=10,求$\frac{1}{a}+\frac{1}{b}$的值;
(2)计算:${[{({0.064^{\frac{1}{5}}})^{-2.5}}]^{\frac{2}{3}}}-\root{3}{{3\frac{3}{8}}}-{π^0}$.

分析 (1)化指数式为对数式求得a,b,代入$\frac{1}{a}+\frac{1}{b}$利用对数的运算性质得答案;
(2)化小数为分数,化0指数幂为1,然后利用有理指数幂的运算性质化简.

解答 解:(1)∵2a=5b=10,∴a=log210,b=log510,
则$\frac{1}{a}+\frac{1}{b}$=$\frac{1}{lo{g}_{2}10}+\frac{1}{lo{g}_{5}10}=lg2+lg5=1$;
(2)${[{({0.064^{\frac{1}{5}}})^{-2.5}}]^{\frac{2}{3}}}-\root{3}{{3\frac{3}{8}}}-{π^0}$
=$[(0.{4}^{\frac{3}{5}})^{-\frac{5}{2}}]^{\frac{2}{3}}-\root{3}{(\frac{3}{2})^{3}}-1$
=$(\frac{2}{5})^{-1}-\frac{3}{2}-1$
=$\frac{5}{2}-\frac{3}{2}-1$
=0.

点评 本题考查有理指数幂的化简与求值,考查对数的运算性质,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2cos2x+$\sqrt{3}$sin2x,x∈R
(1)求函数f(x)在[0,$\frac{π}{2}$]上的值域;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=2,b=1,△ABC的面积为$\frac{\sqrt{3}}{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点O为三棱锥P-ABC的顶点P在平面ABC内的投影,若PA=PB=PC,则O为△ABC的外心;若PA⊥BC,PB⊥AC,则O为△ABC的垂心;若P到三边AB,BC,CA的距离都想等且点O在△ABC的内部,则O为△ABC的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=21-x(x≥1)的值域为(  )
A.[1,+∞)B.(-∞,1]C.(0,1]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知在锐角△ABC中,角A,B,C的对边分别为a,b,c,且$tanB=\frac{{\sqrt{3}ac}}{{{a^2}+{c^2}-{b^2}}}$.
(1)求∠B;
(2)求函数$f(x)=sinx+2sinBcosx,x∈[0,\frac{π}{2}]$的值域及单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)是定义在R上的奇函数,且在[0,+∞)上单调递增,则f(-3),f(-4)的大小关系是(  )
A.f (-3)>f (-4)B.f (-3)<f (-4)C.f (-3)=f (-4)D.无法比较

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$y=sin(\frac{π}{6}+2x)+cos2x$
(1)将函数化为正弦型函数y=Asin(ωx+φ)的形式;
(2)求函数的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$f(x)=ln(x+2)-\frac{2}{x}$的零点所在的区间是(  )
A.(3,4)B.(2,e)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,三边长a,b,c,满足a+c=3b,则$tan\frac{A}{2}tan\frac{C}{2}$的值为(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案