精英家教网 > 高中数学 > 题目详情

【题目】若点O内,且满足,设的面积, 的面积,则________.

【答案】

【解析】,可得:

延长OA,OB,OC,使OD=2OA,OE=4OB,OF=3OC,

如图所示:

2+3+4=

即O是DEF的重心,

△DOE,△EOF,△DOF的面积相等,

不妨令它们的面积均为1,

AOB的面积为BOC的面积为AOC的面积为

故三角形AOB,BOC,AOC的面积之比依次为: =3:2:4,

.

故答案为

点睛:本题考查的知识点是三角形面积公式,三角形重心的性质,平面向量在几何中的应用,注意重要结论:点O内,且满足 则三角形AOB,BOC,AOC的面积之比依次为 .

型】填空
束】
16

【题目】如图,正方形ABCD的边长为2OAD的中点,射线OPOA出发,绕着点O顺时针方向旋转至OD,在旋转的过程中,记OP所经过的在正方形ABCD内的区域(阴影部分)的面积,那么对于函数有以下三个结论:

②任意,都有

③任意,都有.

其中正确结论的序号是__________. (把所有正确结论的序号都填上).

【答案】①②

【解析】试题分析::如图,当时, 相交于点,则

∴①正确;:由于对称性, 恰好是正方形的面积,

∴②正确;:显然是增函数,∴③错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,P是直线x=4上一动点,以P为圆心的圆Γ经定点B(1,0),直线l是圆Γ在点B处的切线,过A(﹣1,0)作圆Γ的两条切线分别与l交于E,F两点.

(1)求证:|EA|+|EB|为定值;
(2)设直线l交直线x=4于点Q,证明:|EB||FQ|=|BF|EQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,有2Sn=n2+n+4(n∈+)

(1)求数列的通项公式an;

(2)若bn=,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,有两个独立的转盘()、().两个图中三个扇形区域的圆心角分别为.用这两个转盘进行玩游戏,规则是:依次随机转动两个转盘再随机停下(指针固定不会动,当指针恰好落在分界线时,则这次结果无效,重新开始),记转盘()指针所对的数为,转盘()指针所对的数为,(),求下列概率:

(1)

(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的一元二次函数,分别从集合中随机取一个数得到数对

1)若 ,求函数内是偶函数的概率;

2)若 求函数有零点的概率;

3)若 ,求函数在区间上是增函数的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对的边分别为a,b,c.向量 =(a, b)与 =(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A为120°,AB,AC的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.

(1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?
(2)已知AP段围墙高1米,AQ段围墙高1.5米,AP段围墙造价为每平方米150元,AQ段围墙造价为每平方米100元.若围围墙用了30000元,问如何围可使竹篱笆用料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+x2
(Ⅰ)求函数h(x)=f(x)﹣3x的极值;
(Ⅱ)若函数g(x)=f(x)﹣ax在定义域内为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的半径为2,圆心在轴的正半轴上,且与直线相切.

(1)求圆的方程。

(2)在圆上,是否存在点,使得直线与圆相交于不同的两点,且△的面积最大?若存在,求出点的坐标及对应的△的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案