精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱ABC﹣A1B1C1中,AC=AA1=2,AB=BC=2 ,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.

(1)求证:BC1⊥平面AA1C1C;
(2)求二面角C1﹣AB﹣C的余弦值.

【答案】
(1)解:∵三棱柱ABC﹣A1B1C1中,AC=AA1=2,AB=BC=2 ,∠AA1C1=60°,

∵AC=AA1,∴AA1=A1C1

∵∠AA1C1=60°,∴△AA1C1为等腰三角形,

同理△ABC1是等腰三角形,

∵D为AC1的中点,∴BD⊥AC1

∵平面ABC1⊥平面AA1C1C,所以过B作平面AA1C1C的垂线,垂足在AC1上,

三角形ABC是等腰三角形,取AC的中点E,连结CE,EB,可知BE⊥AC,C1E⊥AC,所以AC⊥平面BEC1

过B作平面AA1C1C的垂线,垂足在EC1上,可得垂足是C1

∴BC1⊥平面AA1C1C


(2)解:由(1)可得C1B=2,以点D为坐标原点,DA、DC、DM分别为x轴、y轴、z轴,建立空间直角坐标系,M为AB的中点,A(1,0,0);B(﹣1,0,2)C(0, ,0),D(0,0,0),

平面ABC1的一个法向量为 =(0,1,0),设平面ABC的法向量为 =(x,y,z),

由题意可得 =(﹣1, ,0), =(﹣2,0,2),则

所以平面ABC的一个法向量为 =( ,1, ),

∴cosθ= = =

即二面角C1﹣AB﹣C的余弦值等于


【解析】(1)说明过B作平面AA1C1C的垂线,垂足在AC1上,取AC的中点E,连结CE,EB,说明过B作平面AA1C1C的垂线,垂足在EC1上,推出垂足是C1 . 然后证明结论.(2)以点D为坐标原点,DA、DC、DM分别为x轴、y轴、z轴,建立空间直角坐标系,分别求出平面ABC1与平面ABC的法向量,从而可算出二面角C1﹣AB﹣C的余弦值.
【考点精析】关于本题考查的直线与平面垂直的判定,需要了解一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)lg(axbx)(a>1>b>0).

(1)f(x)的定义域;

(2)f(x)(1,+∞)上递增且恒取正值ab满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数,是函数的导函数, 是自然对数的底数.

(1)当时,求导函数的最小值;

(2)若不等式对任意恒成立,求实数的最大值;

(3)若函数存在极大值与极小值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游爱好者计划从3个亚洲国家A1A2A33个欧洲国家B1B2B3中选择2个国家去旅游.

(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;

(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 =1(a>b>0)上的点到右焦点F的最小距离是 ﹣1,F到上顶点的距离为 ,点C(m,0)是线段OF上的一个动点.
(1)求椭圆的方程;
(2)是否存在过点F且与x轴不垂直的直线l与椭圆交于A、B两点,使得( + )⊥ ,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】九十年代,政府间气候变化专业委员会(IPCC)提供的一项报告指出:使全球气候逐年变暖的一个重要因素是人类在能源利用与森林砍伐中使CO2浓度增加据测,1990年、1991年、1992年大气中的CO2浓度分别比1989年增加了1个可比单位、3个可比单位、6个可比单位。若用函数模拟九十年代中每年CO2浓度增加的可比单位数y与年份增加x的关系,模拟函数可选用二次函数或函数(其中abc为常数)

(Ⅰ)写出这两个函数的解释式;

(Ⅱ)若知1994年大气中的CO2浓度比1989年增加了16个可比单位,请问用以上哪个函数作为模拟函数与1994年的实际数据更接近?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在不为零的常数,使得函数对定义域内的任一均有,则称函数为周期函数,其中常数就是函数的一个周期

(Ⅰ)证明:若存在不为零的常数使得函数对定义域内的任一均有,则此函数是周期函数

(Ⅱ)若定义在上的奇函数满足,试探究此函数在区间内的零点的最少个数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系上一动点到点的距离是点到点的距离的2倍。

(1)求点的轨迹方程;

(2)若点与点关于点对称,求,两点间距离的最大值。

(3)若过点的直线与点的轨迹相交于两点,,则是否存在直线,使 取得最大值,若存在,求出此时的方程,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究型学习小组调查研究高中生使用智能手机对学习的影响,部分统计数据如下:

使用智能手机

不使用智能手机

合计

学习成绩优秀

学习成绩不优秀

合计

(1)根据以上统计数据,你是否有 的把握认为使用智能手机对学习有影响?

(2)为了进一步了解学生对智能手机的使用习惯,现在对以上使用智能手机的高中时采用分层抽样的方式,抽取一个容量为 的样本,若抽到的学生中成绩不优秀的比成绩优秀的多 人,求 的值.

查看答案和解析>>

同步练习册答案