精英家教网 > 高中数学 > 题目详情

【题目】如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),

(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;
(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.

【答案】
(1)解:设BD=x,则CD=3﹣x

∵∠ACB=45°,AD⊥BC,∴AD=CD=3﹣x

∵折起前AD⊥BC,∴折起后AD⊥BD,AD⊥CD,BD∩DC=D

∴AD⊥平面BCD

∴VABCD= ×AD×SBCD= ×(3﹣x)× ×x(3﹣x)= (x3﹣6x2+9x)

设f(x)= (x3﹣6x2+9x) x∈(0,3),

∵f′(x)= (x﹣1)(x﹣3),∴f(x)在(0,1)上为增函数,在(1,3)上为减函数

∴当x=1时,函数f(x)取最大值

∴当BD=1时,三棱锥A﹣BCD的体积最大


(2)解:以D为原点,建立如图直角坐标系D﹣xyz,

由(1)知,三棱锥A﹣BCD的体积最大时,BD=1,AD=CD=2

∴D(0,0,0),B(1,0,0),C(0,2,0),A(0,0,2),M(0,1,1),E( ,1,0),且 =(﹣1,1,1)

设N(0,λ,0),则 =(﹣ ,λ﹣1,0)

∵EN⊥BM,∴ =0

即(﹣1,1,1)(﹣ ,λ﹣1,0)= +λ﹣1=0,∴λ= ,∴N(0, ,0)

∴当DN= 时,EN⊥BM

设平面BMN的一个法向量为 =(x,y,z),由 =(﹣1, ,0)

,取 =(1,2,﹣1)

设EN与平面BMN所成角为θ,则 =(﹣ ,﹣ ,0)

sinθ=|cos< >|=| |= =

∴θ=60°

∴EN与平面BMN所成角的大小为60°


【解析】(1)设BD=x,先利用线面垂直的判定定理证明AD即为三棱锥A﹣BCD的高,再将三棱锥的体积表示为x的函数,最后利用导数求函数的最大值即可;(2)由(1)可先建立空间直角坐标系,写出相关点的坐标和相关向量的坐标,设出动点N的坐标,先利用线线垂直的充要条件计算出N点坐标,从而确定N点位置,再求平面BMN的法向量,从而利用夹角公式即可求得所求线面角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合M={x| <0},N={x|x≤﹣1},则集合{x|x≥3}等于(
A.M∩N
B.M∪N
C.R(M∩N)
D.R(M∪N)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)求曲线的普通方程和直线的倾斜角;

2)设点,直线和曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】购买一件售价为5 000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月付款一次,过1个月再付款一次,如此下去,到第12次付款后全部付清.如果月利率为0.8%,每月利息按复利计算(上月利息计入下月本金),那么每期应付款多少元?(精确到1元)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海上养殖基地A,接到气象部门预报,位于基地南偏东60°方向相距20(+1)海里的海面上有一台风中心,影响半径为20海里,正以每小时10海里的速度沿某一方向匀速直线前进,预计台风中心在基地东北方向时对基地的影响最强烈且(+1)小时后开始影响基地持续2小时,求台风移动的方向.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,ABCD为矩形,PA平面ABCD,PA=AD,M,N,Q分别是PC,AB,CD的中点.

求证:(1)MN平面PAD;

(2)平面QMN平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x﹣1)的图象关于直线x=1对称,且当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立若a=(20.2)f(20.2),b=(1n2)f(1n2),c=( )f( ),则a,b,c的大小关系是(
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别为椭圆的左、右焦点,点为椭圆的左顶点,点为椭圆的上顶点,且.

(1)若椭圆的离心率为,求椭圆的方程;

(2)设为椭圆上一点,且在第一象限内,直线轴相交于点,若以为直径的圆经过点,证明:点在直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xoy中,已知椭圆C: =1(a>b>0)的离心率e= ,左顶点为A(﹣4,0),过点A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.

(1)求椭圆C的方程;
(2)已知P为AD的中点,是否存在定点Q,对于任意的k(k≠0)都有OP⊥EQ,若存在,求出点Q的坐标;若不存在说明理由;
(3)若过O点作直线l的平行线交椭圆C于点M,求 的最小值.

查看答案和解析>>

同步练习册答案