(本小题满分14分) 设为非负实数,函数.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)讨论函数的零点个数,并求出零点.(Ⅲ)当时,,试求的最大值,并求取得最大值时的表达式。
解析:(Ⅰ)当时,, -------------1分
① 当时,,
∴在上单调递增; --------------2分
② 当时,,
∴在上单调递减,在上单调递增; --------------3分
综上所述,的单调递增区间是和,单调递减区间是。------4分
(Ⅱ)(1)当时,,函数的零点为; -----5分
(2)当时,, --------------6分
故当时,,二次函数对称轴,
∴在上单调递增,; -----------7分
当时,,二次函数对称轴,
∴在上单调递减,在上单调递增; ------------------------------8分
∴的极大值为,
当,即时,函数与轴只有唯一交点,即唯一零点,
由解之得
函数的零点为或(舍去);
----------------------10分
当,即时,函数与轴有两个交点,即两个零点,分别为
和; -----------------------11分
当,即时,函数与轴有三个交点,即有三个零点,
由解得,,
∴函数的零点为和。-----------12分
综上可得,当时,函数的零点为;
当时,函数有一个零点,且零点为;
当时,有两个零点和;
当时,函数有三个零点和www..com
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com