精英家教网 > 高中数学 > 题目详情
15.若函数$f(x)=\sqrt{|{x+1}|+|{x-t}|-2015}$的定义域为R,则实数t的取值范围是(  )
A.[-2015,2015]B.[-2014,2016]
C.(-∞,2014]∪[2016,+∞)D.(-∞,-2016]∪[2014,+∞)

分析 由题意可得|x+1|+|x-t|≥2015恒成立,再由绝对值的意义可得|x+1|+|x-t|的最小值为|t+1|,从而得到t的范围.

解答 解:∵函数$f(x)=\sqrt{|{x+1}|+|{x-t}|-2015}$的定义域为R,
∴|x+1|+|x-t|≥2015恒成立.
而|x+1|+|x-t|表示数轴上的x对应点到-1对应点的距离减去它到t对应点的距离,它的最小值为|t+1|,
故有|t+1|≥2015,解得t∈(-∞,-2016]∪[2014,+∞).
故选:D.

点评 本题主要考查绝对值的意义,绝对值不等式的解法,函数的恒成立问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.
(1)求证:A1B∥面ADC1;          
(2)求直线B1C1与平面ADC1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}满足${a_1}=0,{a_{n+1}}=\frac{{{a_n}-\sqrt{3}}}{{\sqrt{3}{a_n}+1}}(n∈{N^*})$,则前200项的和为(  )
A.0B.$-\sqrt{3}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.解方程:x2-2|x-1|-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数中,即是奇函数又是定义域内的增函数的是(  )
A.$y=-\frac{1}{x}$B.y=|x+1|-1C.y=x|x|D.y=x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=|{x+\frac{t}{2}}|+\frac{{8-{t^2}}}{4}({x∈R})$,若函数F(x)=f[f(x)]与y=f(x)在x∈R时有相同的值域,实数t的取值范围是(-∞,-2)∪(4,+∞)..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图长方体ABCD-A1B1C1D1中,E,F,G分别是棱AB,DC,D1C1的中点.
求证:(1)EG∥平面ADD1A1
(2)平面EFG⊥平面A1B1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow{m}$=(2cosx+2$\sqrt{3}$sinx,1),$\overrightarrow{n}$=(cosx,-y),且满足$\overrightarrow{m}$•$\overrightarrow{n}$=0,将y表示为x的函数,并求f(x)的最小周期.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.程序框图如图,如果程序运行的结果为S=132,若要使输出的结果为1320,则正确的修改方法是(  ) 
A.在①处改为k=13,s=1B.在②处改为K<10
C.在③处改为S=S×(K-1)D.在④处改为K=K-2

查看答案和解析>>

同步练习册答案