精英家教网 > 高中数学 > 题目详情

【题目】“开门大吉”是中央电视台推出的娱乐节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐的单音色旋律,选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.

(Ⅰ) 完成下列2×2列联表;

正误

年龄

正确

错误

合计

20~30

30

30~40

70

合计

120

(Ⅱ)判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由.(下面的临界值表供参考)

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

【答案】(1)见解析(2)有把握

【解析】分析:(1)根据所给的二维条形图的性质可得到列联表;(2)根据列联表,利用公式求出从而可得出结论.

详解(1)

年龄/正误

正确

错误

合计

20~30

10

40

30~40

10

80

合计

20

100

(Ⅱ)

的把握认为猜对歌曲名称与否和年龄有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设复数z=2m+(4-m2)i,当实数m取何值时,复数z对应的点:

(1)位于虚轴上?

(2)位于一、三象限

(3)位于以原点为圆心,以4为半径的圆上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线,曲线 .以极点为坐标原点,极轴为轴正半轴建立直角坐标系,曲线的参数方程为为参数).

(1)求的直角坐标方程;

(2)交于不同四点,这四点在上的排列顺次为,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面中两条直线相交于点O,对于平面上任意一点M,若xy分别是M到直线的距离,则称有序非负实数对(xy)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列三个命题:

①若p=q=0,则“距离坐标”为(00)的点有且只有1个;

②若pq=0,且p+q≠0,则“距离坐标”为(pq的点有且只有2个;

③若pq≠0则“距离坐标”为pq的点有且只有4个.

上述命题中,正确命题的是______.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)在中,内角的对边分别为,且,证明:

(2)已知结论:在直角三角形中,若两直角边长分别为,斜边长为,则斜边上的高.若把该结论推广到空间:在侧棱互相垂直的四面体中,若三个侧面的面积分别为,底面面积为,则该四面体的高之间的关系是什么?(用表示

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校对校园进行绿化,移栽香樟和桂花两种大树各2株,若香樟的成活率为,桂花的成活率为,假设每棵树成活与否是相互独立的.求:

Ⅰ)两种树各成活一株的概率;

Ⅱ)设ξ表示两种树成活的总株数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读右面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为(  )

A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为( )

A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过原点的动直线l与圆相交于不同的两点A,B.

(1)求线段AB的中点M的轨迹C的方程;

(2)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案