精英家教网 > 高中数学 > 题目详情
已知点(3,1)和(-4,6)在直线3x-2y+a=0的同侧,则a的取值范围是
 
考点:二元一次不等式(组)与平面区域
专题:不等式的解法及应用
分析:根据点(3,1)和(-4,6)在直线3x-2y+a=0的同侧,得出(9-2+a)(-12-12+a)>0,求出a的取值范围.
解答: 解:∵点(3,1)和(-4,6)在直线3x-2y+a=0的同侧,
∴(9-2+a)(-12-12+a)>0,
解得a<-7或a>24;
∴a的取值范围是{a|a<-7或a>24}.
故答案为:{a|a<-7或a>24}.
点评:本题考查了二元一次不等式(组)表示平面区域的问题,解题时应根据题意列出不等式,从而求出结果,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求圆x2+y2=25过点B(-5,2)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=logax+3恒过定点
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=cos3x-3cosx在下列哪个区间是增函数(  )
A、(
π
6
π
4
B、(
π
6
4
C、(
π
2
4
D、(π,
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱锥P-ABC中,E、F分别为AC、BC的中点.
(1)证明:EF∥平面PAB;(2)若PA=PB,CA=CB,求证:AB⊥PC;
(3)若PB=AB=CB,ABC=120°,PB⊥面ABC,求二面角P-AC-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线C1:y2=2px(p>0),圆C2与y轴相切,其圆心是抛物线的焦点,点M是抛物线的准线与x轴的交点,点N是圆C2上的任意一点,且线段MN长度的最大值为3,直线l过抛物线C1的焦点,与C1交于A、D两点,与C2交于B、C两点.
(Ⅰ)求C1与C2的方程;
(Ⅱ)是否存在直线l,使得kOA+kOB+kOC+kOD=3
2
(其中O为坐标原点),且|AB|,|BC|,|CD|依次成等差数列?若存在,求出所有满足条件的直线l;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上增函数,且对任意x∈R,都有f[f(x)-3x]=4,则f(2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是集合{2t+m|0≤m<t,且m,t∈N}中所有的数从小到大排列成的数列,即2,4,5,8,9,10,…将数列各项按照从上到下,从左到右的原则写成如图所示的三角形数表.

(Ⅰ)在答题卡上写出这个三角形数表的第四行的各数
(Ⅱ)求a50的值
(Ⅲ)设第i行的各数之和为bi(i=1,2,3…),(例如:b1=2,b2=4+5,b3=8+9+10,…),求Tn=b1+b2+b3+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(1,0),
c
=(3,4),若λ为实数,(
b
a
)⊥
c
,则λ的值为(  )
A、-
3
11
B、-
11
3
C、
1
2
D、
3
5

查看答案和解析>>

同步练习册答案