精英家教网 > 高中数学 > 题目详情
将边长为a的正方形ABCD沿对角线AC折成60°的二面角后,B,D两点之间的距离等于
2
2
a
2
2
a
分析:先确定二面角的平面角,再利用余弦定理,即可求得B,D两点之间的距离.
解答:解:取AC的中点O,连接BO,DO,则AC⊥BO,AC⊥DO
∴∠BOD为二面角的平面角,即∠BOD=60°
在△BOD中,BO=DO=
2
2
a

∴BD2=
1
2
a
2
+
1
2
a
2
-2×
2
2
a
×
2
2
a
×cos60°=
1
2
a
2

∴BD=
2
2
a

故答案为:
2
2
a
点评:本题考查平面图形的翻折,考查二面角,考查余弦定理的运用,解题的关键是确定二面角的平面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D-ABC的体积为(  )
A、
a3
6
B、
a3
12
C、
3
12
a3
D、
2
12
a3

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,将边长为a的正方形剪去阴影部分后,围成一个正三棱锥,则正三棱锥的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,将边长为3的正方形ABCD绕中心O顺时针旋转α (0<α<
π
2
)得到正方形A′B′C′D′.根据平面几何知识,有以下两个结论:
①∠A′FE=α;
②对任意α (0<α<
π
2
),△EAL,△EA′F,△GBF,△GB′H,△ICH,△IC′J,△KDJ,△KD′L均是全等三角形.
(1)设A′E=x,将x表示为α的函数;
(2)试确定α,使正方形A′B′C′D′与正方形ABCD重叠部分面积最小,并求最小面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为a的正方形ABCD沿对角线AC折起,使BD=
2
2
a
,则三棱锥D-ABC的体积为(  )

查看答案和解析>>

同步练习册答案