精英家教网 > 高中数学 > 题目详情

【题目】某测试团队为了研究“饮酒”对“驾车安全”的影响,随机选取名驾驶员先后在无酒状态、酒后状态下进行“停车距离”测试.测试的方案:电脑模拟驾驶,以某速度匀速行驶,记录下驾驶员的“停车距离”(驾驶员从看到意外情况到车子完全停下所需要的距离).无酒状态与酒后状态下的试验数据分别列于表1和表2.

表1

停车距离(米)

频数

24

42

24

9

1

表2

平均每毫升血液酒精含量毫克

10

30

50

70

90

平均停车距离

30

50

60

70

90

回答以下问题.

(1)由表1估计驾驶员无酒状态下停车距离的平均数;

(2)根据最小二乘法,由表2的数据计算关于的回归方程

(3)该测试团队认为:驾驶员酒后驾车的平均“停车距离”大于(1)中无酒状态下的停车距离平均数的倍,则认定驾驶员是“醉驾”.请根据(2)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为“醉驾”?(精确到个位)

(附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为

【答案】(1)27.1(2)(3)大于毫克时为“醉驾”

【解析】分析:(1)每个区间的中点作为估计值进行计算可得平均数;

(2)根据所给公式计算回归方程中的系数即可;

(3)由(2)解不等式可得.

详解:(1)

(2)

∴回归方程为

(3)由题意知:,∴

∴预测当每毫升血液酒精含量大于毫克时为“醉驾”

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈.

(Ⅰ)这5人中男生、女生各多少名?

(Ⅱ)从这5人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线C1的参数方程为t为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ21+sin2θ)=2,点M的极坐标为().

1)求点M的直角坐标和C2的直角坐标方程;

2)已知直线C1与曲线C2相交于AB两点,设线段AB的中点为N,求|MN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列中,,数列满足.

1)求数列中的前四项;

2)求证:数列是等差数列;

3)若,试判断数列是否有最小项,若有最小项,求出最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆关于直线对称,则的最小值为__________.由点向圆所作两条切线,切点记为,当取最小值时,外接圆的半径为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=米,记∠BHE=

(1)试将污水净化管道的长度L表示为的函数,并写出定义域;

(2)当取何值时,污水净化效果最好?并求出此时管道的长度L.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个正方形花圃被分成5.

1)若给这5个部分种植花,要求相邻两部分种植不同颜色的花,己知现有红、黄、蓝、绿4种颜色不同的花,求有多少种不同的种植方法?

2)若向这5个部分放入7个不同的盆栽,要求每个部分都有盆栽,问有多少种不同的放法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第一次大考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于分为优秀,分以下为非优秀,统计成绩后,得到如下列联表,且已知在甲、乙两个文科班全部人中随机抽取人为优秀的概率为.

I)请完成列联表:

优秀

非优秀

合计

甲班

乙班

合计

()根据列联表的数据能否在犯错误的概率不超过的前提下认为成绩与班级有关系?

参考公式和临界值表:

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的偶函数f(x)和奇函数g(x)满足.

(1)求函数f(x)g(x)的表达式;

(2)时,不等式恒成立,求实数a的取值范围;

(3)若方程上恰有一个实根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案