(本小题满分12分)
如图,在正四棱柱ABCD—A1B1C1D1中,AA1=AB,点E、M分别为A1B、C1C的中点,过点A1,B,M三点的平面A1BMN交C1D1于点N.
(Ⅰ)求证:EM∥平面A1B1C1D1;
(Ⅱ)求二面角B—A1N—B1的正切值.
(Ⅱ)
(Ⅰ)证明:取A1B1的中点F,连EF,C1F ∵E为A1B中点 ∴EF∥ BB1 又∵M为CC1中点 ∴EF∥ C1M∴四边形EFC1M为平行四边形 ∴EM∥FC1
而EM 平面A1B1C1D1 . FC1平面A1B1C1D1 .
∴EM∥平面A1B1C1D1………………6分
(Ⅱ)由⑴EM∥平面A1B1C1D1
EM平面A1BMN,平面A1BMN∩平面A1B1C1D1=A1N
∴A1N// EM// FC1 ∴N为C1D1 中点,过B1作B1H⊥A1N于H,连BH,根据三垂线定理 BH⊥A1N
∠BHB1即为二面角B—A1N—B1的平面角……8分
设AA1=a, 则AB=2a, ∵A1B1C1D1为正方形
∴A1H= 又∵△A1B1H∽△NA1D1
∴B1H=,在Rt△BB1H中,
tan∠BHB1=即二面角B—A1N—B1的正切值为……12分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com