精英家教网 > 高中数学 > 题目详情
7.若|x-2|+y2=0,则xy=1.

分析 利用已知条件求出x,y,然后求解即可.

解答 解:|x-2|+y2=0,
可得x=2,y=0,
则xy=20=1.
故答案为:1.

点评 本题考查表达式值的求法,非负数的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.从(0,1)中随机取出两个数,求下列事件的概率:
(1)两数的和大于1.2;
(2)两数的平方和小于0.25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.双曲线x2-$\frac{{y}^{2}}{9}$=1的渐近线与抛物线y2=2px(p>0)的准线相交于A,B两点,若△ABO的面积为6(O为坐标原点),则p的值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.化简:$\frac{cos(α+2π)•tan(α+π)}{sin(α-2π)}$得(  )
A.1B.-1C.sin2αD.cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若数列{an}是公比为q的等比数列,下列数列中不是等比数列的是(  )
A.{an•an+1}B.{nan}C.{${a}_{n}^{2}$}D.$\frac{{a}_{n}}{{a}_{n+1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知O为坐标原点,A,B为双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上两点,且$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{0}$,若双曲线C上与A,B两点横坐标不相同的任意一点P,满足kPA•kPB=2(k表示直线的斜率0),则双曲线C的离心率为(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x>0,y>0,且$\frac{1}{xy}$+$\frac{2}{x}$+$\frac{3}{y}$=2,则x+2y的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x+1)定义域是[2,3],求f(x2+2)定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出平面区域如图所示,其中A(1,1),B(2,5),C(4,3)若使目标函数z=ax-y仅在点C处取得最大值,则a的取值范围是$({\frac{2}{3},+∞})$.

查看答案和解析>>

同步练习册答案