精英家教网 > 高中数学 > 题目详情
18.若对于任意的x∈[a,2a],都有y∈[a,a2]满足logax+logay=3,则实数a的取值范围是[2,+∞).

分析 先由方程logax+logay=3解出y,转化为函数的值域问题求解即可.

解答 解:∵logax+logay=3,
∴logaxy=3,
即xy=a3,得y=$\frac{{a}^{3}}{x}$,
则函数y=f(x)=$\frac{{a}^{3}}{x}$,在[a,2a]上单调递减,
∴y∈[$\frac{1}{2}{a}^{2}$,a2],
故$\frac{1}{2}$a2≥a,
解得a≥2,
∴a的取值范围是[2,+∞).
故答案为:[2,+∞).

点评 本题考查对数式的运算、反比例函数的值域、集合的关系等问题,根据对数的运算法则进行化简是解决本题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.下列命题中错误的个数为:(  )
①y=$\frac{1}{2}+\frac{1}{{{2^x}-1}}$的图象关于(0,0)对称;
②y=x3+x+1的图象关于(0,1)对称;
③y=$\frac{1}{{{x^2}-1}}$的图象关于直线x=0对称;
④y=sinx+cosx的图象关于直线x=$\frac{π}{4}$对称.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设fn(x)是等比数列1,-x,x2,…,(-x)n的各项和,则f2016(2)等于(  )
A.$\frac{{{2^{2016}}+1}}{3}$B.$\frac{{{2^{2016}}-1}}{3}$C.$\frac{{{2^{2017}}+1}}{3}$D.$\frac{{{2^{2017}}-1}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知命题p:不等式x2-2ax-2a+3≥0恒成立;命题q:不等式x2+ax+2<0有解.
(Ⅰ)若p∨q和¬q均为真命题,求实数a的取值范围;
(Ⅱ)若p是真命题,抛物线y=x2与直线y=ax+1相交于M,N两点,O为坐标原点,求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设数列{an}是等差数列,且a2=-2,a8=6,数列{an}的前n项和为Sn,则S9=(  )
A.27B.18C.20D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)满足对于任意实数a,b,c,都有f(a),f(b),f(c)为某三角形的三边长,则成f(x)为“可构造三角形函数”,已知f(x)=$\frac{{2}^{x}-t}{{2}^{x}+1}$是“可构造三角形函数”,则实数t的取值范围是(  )
A.[-1,0]B.(-∞,0]C.[-2,-1]D.[-2,-$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1的左顶点A作斜率为1的直线l,若l与双曲线的两条渐近线分别相交于B,C,且2$\overrightarrow{AB}$=$\overrightarrow{BC}$,则此双曲线的离心率是(  )
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{3}$C.$\sqrt{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,四面体OABC中,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,点M在OA上,且OM=2MA,N为BC的中点,$\overrightarrow{MN}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$+z$\overrightarrow{c}$,则x+y+z=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥$\frac{3}{5}$|CD|,则双曲线离心率的取值范围为[$\frac{5}{4}$,+∞).

查看答案和解析>>

同步练习册答案