精英家教网 > 高中数学 > 题目详情
9.函数y=sin(-2x)的单调递增区间是(  )
A.[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$](k∈Z)B.[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$](k∈Z)
C.[2kπ+π,2kπ+2π](k∈Z)D.[kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$](k∈Z)

分析 本题即求函数t=sin2x的减区间,再利用正弦函数的减区间求得结果.

解答 解:函数y=sin(-2x)=-sin2x 的单调递增区间,即函数t=sin2x的减区间,
令2kπ+$\frac{π}{2}$≤2x≤2kπ+$\frac{3π}{2}$,k∈Z,求得 kπ+$\frac{π}{4}$≤x≤kπ+$\frac{3π}{4}$,
可得函数t=sin2x的减区间为[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$](k∈Z),
故选:B.

点评 本题主要考查正弦函数的单调性,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.如图,已知圆(x-2)2+y2=$\frac{4}{9}$是椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的内接△ABC的内切圆,其中A为椭圆C的左顶点,且椭圆C的离心率为$\frac{{\sqrt{15}}}{4}$,则此椭圆的标准方程为$\frac{x^2}{16}+{y^2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在Rt△ABC中,已知∠C=$\frac{π}{2}$,c=10,请引入一个恰当的变量来表示S,指出定义域,求何时S取最大值.(S表示面积)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若f(x)=2tanx-$\frac{2si{n}^{2}x-1}{sin\frac{x}{2}cos\frac{x}{2}}$,则f($\frac{π}{12}$)的值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在三棱锥P-ABC中,E、F分别是PA、PC的中点,记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是(  )
A.假设至少有一个钝角
B.假设至少有两个钝角
C.假设没有一个钝角
D.假设没有一个钝角或至少有两个钝角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知tanα=$\frac{4}{3}$,tan(α-β)=-$\frac{1}{3}$,则tanβ的值为(  )
A.$\frac{1}{3}$B.3C.$\frac{9}{13}$D.$\frac{13}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.一个多面体的直观图及三视图如图所示(其中M,N分别是AF,BC的中点)
(1)求证:MN∥平面CDEF;
(2)求多面体A-CDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题正确的是(  )
A.垂直于同一条直线的两条直线平行B.垂直于同一个平面的两条直线平行
C.平行于同一个平面的两条直线平行D.平行于同一条直线的两个平面平行

查看答案和解析>>

同步练习册答案