分析 (1)通过4Sn-1=an2+2an,令n=1可得首项,当n≥2时,利用4an=an2+2an-(an-12+2an-1)可得公差,进而可得结论.
(2)由bn=$\frac{1}{{a}_{n}({a}_{n}+2)}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用裂项求和法能证明$\frac{1}{3}$≤Tn<$\frac{1}{2}$.
解答 (1)解:当n=1时,4a1=4S1=${{a}_{1}}^{2}$+2a1+1,
解得a1=1.
当n≥2时,4Sn=an2+2an+1,4Sn-1=an-12+2an-1+1,
相减得4an=an2+2an-(an-12+2an-1),即an2-an-12=2(an+an-1),
又an>0,∴an+an-1≠0,则an-an-1=2,
∴数列{an}是首项为1,公差为2的等差数列,
∴an=1+(n-1)×2=2n-1.
(2)bn=$\frac{1}{{a}_{n}({a}_{n}+2)}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴数列{bn}的前n项和:
Tn=$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})$
=$\frac{1}{2}(1-\frac{1}{2n+1})$$<\frac{1}{2}$,
(Tn)min=T1=$\frac{1}{2}(1-\frac{1}{2×1+1})$=$\frac{1}{3}$,
∴$\frac{1}{3}$≤Tn<$\frac{1}{2}$.
点评 本题考查等差数列的通项公式的求法,考查数列的前n项和的证明,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
科目:高中数学 来源: 题型:选择题
A. | $(\frac{π}{2},π)$ | B. | $(\frac{π}{2},\frac{3π}{2})$ | C. | $(\frac{π}{2},π)∪(\frac{7}{4}π,2π)$ | D. | $(\frac{π}{2},π)∪(\frac{3}{2}π,2π)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com