已知p:|x+1|≤4,q:x2<5x-6,则p是q成立的( )
A.必要不充分条件
B.充分不必要条件
C.充要条件
D.既不充分又不必要条件
【答案】分析:通过解绝对值不等式化简命题p;通过解二次不等式化简命题q;由于p,q对应的是数集,故先判断出p对应的区间是q对应的区间的真子集,判断出p是q成立的必要不充分条件.
解答:解:∵|x+1|≤4,
∴-5≤x≤3即p:[-5,3],
∵x2<5x-6
∴2<x<3,即q:(2,3).
∵(2,3)?[-5,3],
∴p是q的必要不充分条件.
故选A.
点评:判断一个命题是另一个命题的条件问题,应先化简各个命题、当两个命题都是数集时,可将问题转化为集合的包含关系问题.