精英家教网 > 高中数学 > 题目详情

【题目】20201月,某公司以问卷的形式调查影响员工积极性的六项关键指标:绩效奖励、排班制度、激励措施、工作环境、人际关系、晋升渠道,在确定各项指标权重结果后,进而得到指标重要性分析象限图(如图).若客户服务中心从中任意抽取不同的两项进行分析,则这两项来自影响稍弱区的概率为(

A.B.C.D.

【答案】A

【解析】

根据图可知,来自影响稍弱区的指标有激励措施、工作环境、人际关系三项,记为,其余三项记为,列举出从中任选两项的基本事件的总数,再找出两项来自影响稍弱区的基本事件的个数,代入古典概型的概率公式求解.

由图可知,来自影响稍弱区的指标有激励措施、工作环境、人际关系三项,设为,其余三项设为

则从中任选两项的结果为

种结果,

这两项来自影响稍弱区的结果为种,

故概率.

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为解决城市的拥堵问题,某城市准备对现有的一条穿城公路MON进行分流,已知穿城公路MON自西向东到达城市中心点O后转向东北方向(即).现准备修建一条城市高架道路LLMO上设一出入口A,在ON上设一出入口B.假设高架道路LAB部分为直线段,且要求市中心OAB的距离为10km

1)求两站点AB之间距离的最小值;

2)公路MO段上距离市中心O30km处有一古建筑群C为保护古建筑群,设立一个以C为圆心,5km为半径的圆形保护区.则如何在古建筑群C和市中心O之间设计出入口A,才能使高架道路L及其延伸段不经过保护区(不包括临界状态)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间;

2)对a∈(01),是否存在实数λ,使成立,若存在,求λ的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆交于不同的两点,线段的中点为,且直线与直线的斜率之积为.若直线与直线交于点,与直线交于点,且点为直线上一点.

1)求的轨迹方程;

2)若为椭圆的上顶点,直线轴交点,记表示面积,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),若以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

2)若点P的坐标为,且曲线与曲线交于CD两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程:为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程;

2)过曲线上一点作直线与曲线交于两点,中点为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了进一步激发同学们的学习热情,某班级建立了数学英语两个学习兴趣小组,两组的人数如下表所示:

组别

性别

数学

英语

5

1

3

3

现采用分层抽样的方法(层内采用简单随机抽样)从两组中共抽取3名同学进行测试.

1)求从数学组抽取的同学中至少有1名女同学的概率;

2)记ξ为抽取的3名同学中男同学的人数,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年春季,某出租汽车公同决定更换一批新的小汽车以代替原来报废的出租车,现有AB两款车型,根据以这往这两种租车车型的数据,得到两款出租车型使用寿命频数表如表:

1)填写下表,并判断是否有99%的把握认为出租车的使用寿命年数与汽车车型有关?

2)司机师傅小李准备在一辆开了4年的A型车和一辆开了4年的B型车中选择,为了尽最大可能实现3年内(含3年)不换车,试通过计算说明,他应如何选择.

参考公式:,其中na+b+c+d.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥SABCD中,SDCDSC2AB2BC,平面ABCD⊥底面SDCABCD,∠ABC90°,ESD中点.

1)证明:直线AE//平面SBC

2)点F为线段AS的中点,求二面角FCDS的大小.

查看答案和解析>>

同步练习册答案