精英家教网 > 高中数学 > 题目详情
18.下列命题中:
①命题“若x2-5x+6=0,则x=2或x=3”的逆否命题为“若x≠2或x≠3,则x2-5x+6≠0”.
②命题p:“存在x0∈R,使得log2x0≤0”的否定是“任意x∈R,使得log2x>0”;
③回归直线方程一定过样本中心点($\overline{x}$,$\overline{y}$).
其中真命题的个数为(  )
A.0B.1C.2D.3

分析 直接写出命题的逆否命题判断A;写出原命题的否定判断B;由回归直线恒过样本中心点判断C.

解答 解:命题“若x2-5x+6=0,则x=2或x=3”的逆否命题是“若x≠2且x≠3,则x2-5x+6≠0”,故①是假命题.
命题p:“存在x0∈R,使得log2x0≤0”的否定是“任意x∈R,使得log2x>0”,故②是真命题.
回归直线方程一定过样本中心点($\overline{x}$,$\overline{y}$),故③是真命题.
∴真命题的个数是2个.
故选:C.

点评 本题考查命题的真假判断与应用,考查了命题的逆否命题及命题的否定,熟记回归直线一定经过样本中心点这一结论,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知PA垂直于正方形ABCD所在的平面,M,N分别在AB,PC上,且PN=2NC,AM=2MB,PA=AD=1,如图建立空间直角坐标系,求$\overrightarrow{MN}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)是定义域为R的偶函数,当x≥0时,f(x)=x(2-x).
(Ⅰ)在给定的图示中画出函数f(x)图象(不需列表);
(Ⅱ)求函数f(x)的解析式;
(Ⅲ)若方程f(x)=k有两解,求k的范围.(只需写出结果,不要解答过程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}是等差数列,且a2=3,a5=6,数列{bn}是等比数列且公比q=2,S4=15
(1)求通项公式an,bn
(2)设{an}的前n项和为Sn,证明:数列$\left\{{\frac{S_n}{n}}\right\}$是等差数列
(3)设数列$\left\{{\frac{S_n}{n}•{b_n}}\right\}$的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)=$\sqrt{3}$sin2x-cos2x,则将f(x)向右平移$\frac{π}{3}$个单位所得曲线的一条对称轴方程为(  )
A.x=$\frac{π}{6}$B.x=$\frac{π}{4}$C.x=$\frac{π}{2}$D.x=π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P、Q两点,M是PQ中点,l与直线m:x+3y+6=0相交于N.
(1)当PQ=2$\sqrt{3}$时,求直线l的方程;
(2)探索$\overrightarrow{AM}$•$\overrightarrow{AN}$是否为定值,若是,请求出其值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.二次函数y=-x2-mx-1与x轴两交点分别为A(x1,0),B(x2,0),且x1<x2<3,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\sqrt{3}cos(\frac{π}{2}-2x)+2{cos^2}x-1$
(1)求函数f(x)的最小正周期和对称轴方程;
(2)将f(x)的图象左移$\frac{π}{12}$个单位,再向上移1个单位得到g(x)的图象,试求g(x)在区间$[0,\frac{π}{2}]$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线x=2被圆(x-a)2+y2=25所截得的弦长等于8,则a的值为(  )
A.-1或-3B.5或-3C.1或-3D.-1或5

查看答案和解析>>

同步练习册答案