精英家教网 > 高中数学 > 题目详情

【题目】设函数,已知曲线在点处的切线与直线平行

(Ⅰ)求的值;

(Ⅱ)是否存在自然数,使得方程内存在唯一的根?如果存在,求出;如果不存在,请说明理由。

(Ⅲ)设函数表示中的较小者),求的最大值。

【答案】(1) .

(2) 时,方程内存在唯一的根.证明见解析.

(3) .

【解析】试题分析:()求出fx)的导数,求得切线的斜率,由两直线平行的条件:斜率相等,解方程可得;()求出的导数和单调区间,最值,由零点存在定理,即可判断存在;()由()求得的解析式,通过的最大值,即可得到所求.

试题解析:()由题意知,曲线在点处的切线斜率为,所以

所以

时,方程内存在唯一的根.

时,

所以存在,使

因为所以当时, ,当时,

所以当时, 单调递增.

所以时,方程内存在唯一的根.

)由()知,方程内存在唯一的根,且时, 时, ,所以

时,若

可知

时,由可得时, 单调递增; 时, 单调递减;

可知

综上可得函数的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某城市实施了机动车尾号限行,该市报社调查组为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:

年龄(岁)

[1525)

[2535)

[3545)

[4555)

[5565)

[6575]

频数

5

10

15

10

5

5

赞成人数

4

6

9

6

3

4

(Ⅰ)请估计该市公众对“车辆限行”的赞成率和被调查者的年龄平均值;

)若从年龄在[1525)[2535)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“车辆限行”的人数为,求随机变量的分布列和数学期望;

若在这50名被调查者中随机发出20份的调查问卷,记为所发到的20人中赞成“车辆限行”的人数,求使概率取得最大值的整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=exsinx.
(1)求函数f(x)的单调区间;
(2)如果对于任意的 ,f(x)≥kx恒成立,求实数k的取值范围;
(3)设函数F(x)=f(x)+excosx, ,过点 作函数F(x)的图象的所有切线,令各切点的横坐标按从小到大构成数列{xn},求数列{xn}的所有项之和的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是偶函数.

(1)求实数的值;

(2)当时,函数存在零点,求实数的取值范围;

(3)设函数,若函数的图像只有一个公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数据显示,某公司2018年上半年五个月的收入情况如下表所示:

月份

2

3

4

5

6

月收入(万元)

1.4

2.56

5.31

11

21.3

根据上述数据,在建立该公司2018年月收入(万元)与月份的函数模型时,给出两个函数模型供选择.

(1)你认为哪个函数模型较好,并简单说明理由;

(2)试用你认为较好的函数模型,分析大约从第几个月份开始,该公司的月收入会超过100万元?(参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校的学生文娱团队由理科组和文科组构成,具体数据如表所示:

组别

文科

理科

性别

男生

女生

男生

女生

人数

3

1

3

2

学校准备从该文娱团队中选出4人到某社区参加大型公益活动演出,每选出一名男生,给其所在的组记1分;每选出一名女生,给其所在的组记2分,要求被选出的4人中文科组和理科组的学生都有.
(I)求理科组恰好得4分的概率;
(II)记文科组的得分为X,求随机变量X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】美国对中国芯片的技术封锁,这却激发了中国“芯”的研究热潮.某公司研发的两种芯片都已经获得成功.该公司研发芯片已经耗费资金千万元,现在准备投入资金进行生产.经市场调查与预测,生产芯片的毛收入与投入的资金成正比,已知每投入千万元,公司获得毛收入千万元;生产芯片的毛收入(千万元)与投入的资金(千万元)的函数关系为,其图像如图所示.

(1)试分别求出生产两种芯片的毛收入(千万元)与投入资金(千万元)的函数关系式;

(2)如果公司只生产一种芯片,生产哪种芯片毛收入更大?

(3)现在公司准备投入亿元资金同时生产两种芯片,设投入千万元生产芯片,用表示公司所过利润,当为多少时,可以获得最大利润?并求最大利润.(利润芯片毛收入芯片毛收入研发耗费资金)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某宾馆有间标准相同的客房,客房的定价将影响入住率.经调查分析,得出每间客房的定价与每天的入住率的大致关系如下表:

每间客房的定价

220元

200元

180元

160元

每天的入住率

对于每间客房,若有客住,则成本为80元;若空闲,则成本为40元.要使此宾馆每天的住房利润最高,则每间客房的定价大致应为( )

A. 220元 B. 200元 C. 180元 D. 160元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(12分)

(1)若函数上为增函数,求实数的取值范围;

(2)当时,求上的最大值和最小值.

查看答案和解析>>

同步练习册答案