精英家教网 > 高中数学 > 题目详情
16.等差数列{an}中,a3,a7是函数f(x)=x2-4x+3的两个零点,则{an}的前9项和等于(  )
A.-18B.9C.18D.36

分析 由韦达定理得a3+a7=4,从而{an}的前9项和S9=$\frac{9}{2}({a}_{1}+{a}_{9})$=$\frac{9}{2}({a}_{3}+{a}_{7})$,由此能求出结果.

解答 解:∵等差数列{an}中,a3,a7是函数f(x)=x2-4x+3的两个零点,
∴a3+a7=4,
∴{an}的前9项和S9=$\frac{9}{2}({a}_{1}+{a}_{9})$=$\frac{9}{2}({a}_{3}+{a}_{7})$=$\frac{9}{2}×4=18$.
故选:C.

点评 本题考查等差数列的前9项和公式的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.高为$\sqrt{2}$的四棱锥S-ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为$\frac{{\sqrt{10}}}{2}$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过E点做EF⊥PB交PB于点F.求证:
(1)PA∥平面DEB;
(2)PB⊥平面DEF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点A(2,1)和B(-1,3),若直线3x-2y-a=0与线段AB相交,则a的取值范围是(  )
A.-4≤a≤9B.a≤-4或a≥9C.-9≤a≤4D.a≤-9或a≥4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,直线l:$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{5}+2t}\end{array}\right.$(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+4=0.
(Ⅰ)写出曲线C的直角坐标方程;
(Ⅱ)已知点A(0,$\sqrt{5}$),直线l与曲线C相交于点M、N,求$\frac{1}{|AM|}$+$\frac{1}{|AN|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F做圆x2+y2=a2的切线,切点为M,切线交y轴于点P,且$\overrightarrow{FM}$=2$\overrightarrow{MP}$,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,面积为4的矩形ABCD中有一个阴影部分,若往矩形ABCD中随机投掷1000个点,落在矩形ABCD的非阴影部分中的点数为350个,试估计阴影部分的面积为(  )
A.1.4B.1.6C.2.6D.2.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若椭圆$\frac{y^2}{16}+\frac{x^2}{9}=1和双曲线\frac{y^2}{4}-\frac{x^2}{5}=1$的共同焦点为F1、F2,P是两曲线的一个交点,则|PF1|•|PF2|的值为(  )
A.12B.14C.3D.21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.点M(x1,y1)在函数y=-2x+8的图象上,当x1∈[2,5]时,则$\frac{{{y_1}+1}}{{{x_1}+1}}$的取值范围.

查看答案和解析>>

同步练习册答案