精英家教网 > 高中数学 > 题目详情

【题目】已知函数,则下列关于函数的说法,不正确的是(

A.的图象关于对称

B.上有2个零点

C.在区间上单调递减

D.函数图象向右平移个单位,所得图像对应的函数为奇函数

【答案】C

【解析】

根据正弦函数的对称性,其对称轴为判断选项A的正误;

根据正弦函数的零点判断选项B的正误;

根据正弦函数的单调区间,其增区间为,其减区间为,判断选项C的正误;

根据函数的图象平移伸缩变换法则判断选项D的正误;

对于选项A:当,,此时函数,所以的图象关于对称.故选项A正确;

对于选项B:当,,所以当,,即函数上存在零点.故选项B正确;

对于选项C:当,,所以当时函数为增函数,时函数为减函数,所以函数在区间上先增后减.故选项C不正确;

对于选项D:函数图象向右平移个单位得到,函数为奇函数.故选项D正确;

故选: C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一只红玲虫的产卵数和温度有关.现收集了7组观测数据如下表:

温度

21

23

25

27

29

32

35

产卵数/

7

11

21

24

66

115

325

为了预报一只红玲虫在时的产卵数,根据表中的数据建立了的两个回归模型.模型①:先建立的指数回归方程,然后通过对数变换,把指数关系变为;模型②:先建立的二次回归方程,然后通过变换,把二次关系变为的线性回归方程:.

1)分别利用这两个模型,求一只红玲虫在时产卵数的预测值;

2)你认为用哪个模型得到的预测值更可靠?并说明理由.(参考数据:模型①的残差平方和,模型①的相关指数;模型②的残差平方和,模型②的相关指数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1CAB=3BC=5.

)求证:AA1平面ABC

)求二面角A1-BC1-B1的余弦值;

)证明:在线段BC1存在点D,使得ADA1B,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一种叫“对对碰”的游戏,游戏规则如下:一轮比赛中,甲乙两人依次轮流抛一枚质地均匀的硬币,甲先抛,每人抛3次,得分规则如下:甲第一次抛得分,再由乙第一次抛,若出现朝上的情况与甲第一次抛的朝上的情况一样,则本次得2分,否则得1分;再甲第二次抛,若出现朝上的情况与乙第一次抛的朝上的情况一样,则本次得分是乙第一次得分的基础上加1分,否则得1分;再乙第二次抛,若出现朝上的情况与甲第二次抛的朝上的情况一样,则本次得分是甲第二次得分的基础上加1分,否则得1分;按此规则,直到游戏结束.记甲乙累计得分分别为.

1)一轮游戏后,求的概率;

2)一轮游戏后,经计算得乙的数学期望,要使得甲的数学期望,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大湖名城,创新高地的合肥,历史文化积淀深厚,民俗和人文景观丰富,科教资源众多,自然风光秀美,成为中小学生研学游的理想之地.为了将来更好地推进研学游项目,某旅游学校一位实习生,在某旅行社实习期间,把研学游项目分为科技体验游、民俗人文游、自然风光游三种类型,并在前几年该旅行社接待的全省高一学生研学游学校中,随机抽取了100所学校,统计如下:

研学游类型

科技体验游

民俗人文游

自然风光游

学校数

40

40

20

该实习生在明年省内有意向组织高一研学游学校中,随机抽取了3所学校,并以统计的频率代替学校选择研学游类型的概率(假设每所学校在选择研学游类型时仅选择其中一类,且不受其他学校选择结果的影响):

1)若这3所学校选择的研学游类型是科技体验游自然风光游,求这两种类型都有学校选择的概率;

2)设这3所学校中选择科技体验游学校数为随机变量X,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车公司生产新能源汽车,20193-9月份销售量(单位:万辆)数据如下表所示:

月份

3

4

5

6

7

8

9

销售量

(万辆)

3.008

2.401

2.189

2.656

1.665

1.672

1.368

1)某企业响应国家号召,购买了6辆该公司生产的新能源汽车,其中四月份生产的4辆,五月份生产的2辆,6辆汽车随机地分配给AB两个部门使用,其中A部门用车4辆,B部门用车2.现了解该汽车公司今年四月份生产的所有新能源汽车均存在安全隐患,需要召回.求该企业B部门2辆车中至多有1辆车被召回的概率;

2)经分析可知,上述数据近似分布在一条直线附近.关于的线性回归方程为,根据表中数据可计算出,试求出的值,并估计该厂10月份的销售量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017高考新课标Ⅲ19)如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBDAB=BD.

(1)证明:平面ACD⊥平面ABC

(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,APABAD两两垂直,BCAD,且APABAD4BC2.

1)求二面角P-CD-A的余弦值;

2)已知H为线段PC上异于C的点,且DCDH,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数对任意都有,则称为在区间上的可控函数,区间称为函数可控区间,写出函数的一个可控区间是________.

查看答案和解析>>

同步练习册答案