【题目】【2018江苏南京师大附中、天一、海门、淮阴四校高三联考】如图,一只蚂蚁从单位正方体的顶点出发,每一步(均为等可能性的)经过一条边到达另一顶点,设该蚂蚁经过步回到点的概率.
(I)分别写出的值;
(II)设顶点出发经过步到达点的概率为,求的值;
(III)求.
【答案】(I);(II);(III).
【解析】试题分析:
(1)由题意得经过1步不可能从点A回到点A,故;经过2步从点A回到点A的方法有3种,即A-B-A;A-D-A;,且选择每一种走法的概率都是,由此可得所求概率.(2)分为奇数和偶数两种情况讨论可得结论.(3)结合(2)中的结论,分四种情况可得,又,故可得,于是得到
,从而可得结论.
试题解析:”
(1).
(2)由于顶点出发经过步到达点的概率为,
则由出发经过步到达点 的概率也是,并且由出发经过步不可能到这四个点,
所以当为奇数时,所以;
当为偶数时,.
(3)同理,由分别经步到点的概率都是,由出发经过再回到
的路径分为以下四类:
①由经历步到,再经步回到,概率为;
②由经历步到,再经步回到,概率为;
③由经历步到,再经步回到,概率为;
④由经历步到,再经步回到,概率为;
所以,
又,
所以,
即,
所以,
故.
综上所述,.
科目:高中数学 来源: 题型:
【题目】某中学每年暑假举行“学科思维讲座”活动,每场讲座结束时,所有听讲这都要填写一份问卷调查.2017年暑假某一天五场讲座收到的问卷份数情况如下表:
学科 | 语文 | 数学 | 英语 | 理综 | 文综 |
问卷份数 |
用分层抽样的方法从这一天的所有问卷中抽取份进行统计,结果如下表:
满意 | 一般 | 不满意 | |
语文 | |||
数学 | 1 | ||
英语 | |||
理综 | |||
文综 |
(1)估计这次讲座活动的总体满意率;
(2)求听数学讲座的甲某的调查问卷被选中的概率;
(3)若想从调查问卷被选中且填写不满意的人中再随机选出 人进行家访,求这 人中选择的是理综讲座的人数的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点, 在抛物线上且满足,当取最大值时,点恰好在以, 为焦点的双曲线上,则双曲线的离心率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知梯形如图(1)所示,其中, ,四边形是边长为的正方形,现沿进行折叠,使得平面平面,得到如图(2)所示的几何体.
(Ⅰ)求证:平面平面;
(Ⅱ)已知点在线段上,且平面,求与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线: 的焦点为,圆: ,过作垂直于轴的直线交抛物线于、两点,且的面积为.
(1)求抛物线的方程和圆的方程;
(2)若直线、均过坐标原点,且互相垂直, 交抛物线于,交圆于, 交抛物线于,交圆于,求与的面积比的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现在的人基本每天都离不开手机,许多人手机一旦不在身边就不舒服,几乎达到手机二十四小时不离身,这类人群被称为“手机控”,这一群体在大学生中比较突出.为了调查大学生每天使用手机的时间,某调查公司针对某高校男生、女生各25名学生进行了调查,其中每天使用手机时间超过8小时的被称为:“手机控”,否则被称为“非手机控”.调查结果如下:
手机控 | 非手机控 | 合计 | |
女生 | 5 | ||
男生 | 10 | ||
合计 | 50 |
(1)将上面的列联表补充完整,再判断是否有99.5%的把握认为“手机控”与性别有关,说明你的理由;
(2)现从被调查的男生中按分层抽样的方法选出5人,再从这5人中随机选取3人参加座谈会,记这3人中“手机控”的人数为,试求的分布列与数学期望.
参考公式: ,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的一个焦点与抛物线的焦点重合,且过点.过点的直线交椭圆于, 两点, 为椭圆的左顶点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求面积的最大值,并求此时直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com