精英家教网 > 高中数学 > 题目详情
已知向量
a
=(2cosα,2sinα)
b
=(2cosβ,2sinβ)
,且直线2xcosα-2ysinα+1=0与圆(x-cosβ)2+(y+sinβ)2=1相切,则向量
a
b
的夹角为
 
分析:利用直线与圆相切的充要条件:圆心到直线的距离等于圆的半径,再利用向量夹角的余弦等于两向量的数量积除以它们的模
解答:解:∵直线2xcosα-2ysinα+1=0与圆(x-cosβ)2+(y+sinβ)2=1相切,
|2cosβcosα+2sinβsinα+1|
4cos2α+4sin2α
=1
解得cosαcosβ+sinαsinβ=
1
2

向量
a
b
的夹角余弦为
a
b
|
a
||
b
|
=
4cosβcosα+4sinβsinα
2× 2
=
1
2

故两向量的夹角为60°
故答案为60°
点评:本题考查直线与圆相切的充要条件及向量数量积的应用:求夹角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ)
,若向量
a
b
的夹角为60°,求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosθ,2sinθ)
θ∈(
π
2
,π),
b
=(0,-1)
,则向量
a
b
的夹角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosθ,1),
b
=(sinθ+cosθ,1),- 
π
2
<θ<
π
2

(I)若
a
b
,求θ的值
(II)设f(θ)=
a
b
,求函数f(θ)的最大值及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosωx,1),
b
=(sinωx+cosωx,-1)
,(ω∈R,ω>0),设函数f(x)=
a
b
(x∈R)
,若f(x)的最小正周期为
π
2

(1)求ω的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•马鞍山模拟)已知向量
a
=(2cos,2sinx)
,向量
b
=(
3
cosx,-cosx)
,函数f(x)=
a
b
-
3

(1)求函数f(x)(2)的最小正周期;
(3)求函数f(x)(4)的单调递增区间;
(5)求函数f(x)(6)在区间[
π
12
12
]
(7)上的值域.

查看答案和解析>>

同步练习册答案