【题目】已知函数, ,(其中, 为自然对数的底数, ……).
(1)令,若对任意的恒成立,求实数的值;
(2)在(1)的条件下,设为整数,且对于任意正整数, ,求的最小值.
【答案】(1);(2).
【解析】试题分析:(1)由对任意的恒成立,即,利用导数讨论函数的单调性,求出最小值,即可得到实数的值;(2)由(1)知,即,
令(, )则,所以,令,求和后利用放缩法可得,从而可得的最小值.
所以,.
试题解析:(1)因为
所以,
由对任意的恒成立,即,
由,
(i)当时, , 的单调递增区间为,
所以时, ,
所以不满足题意.
(ii)当时,由,得
时, , 时, ,
所以在区间上单调递减,在区间上单调递增,
所以的最小值为 .
设,所以,①
因为
令得,
所以在区间上单调递增,在区间上单调递减,
所以,②
由①②得,则.
(2)由(1)知,即,
令(, )则,
所以,
所以
,
所以,
又,
所以的最小值为.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线和曲线的极坐标方程;
(2)已知射线(),将射线顺时针方向旋转得到:,且射线与曲线交于两点,射线与曲线交于两点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某房产中介公司2017年9月1日正式开业,现对其每个月的二手房成交量进行统计,表示开业第个月的二手房成交量,得到统计表格如下:
(1)统计中常用相关系数来衡量两个变量之间线性关系的强弱.统计学认为,对于变量,如果,那么相关性很强;如果,那么相关性一般;如果,那么相关性较弱.通过散点图初步分析可用线性回归模型拟合与的关系.计算的相关系数,并回答是否可以认为两个变量具有很强的线性相关关系(计算结果精确到0.01)
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程(计算结果精确到0.01),并预测该房产中介公司2018年6月份的二手房成交量(计算结果四舍五入取整数).
参考数据:,,,,.
参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题:
①动点M到二定点A、B的距离之比为常数则动点M的轨迹是圆
②椭圆的离心率为,则
③双曲线的焦点到渐近线的距离是
④已知抛物线上两点(是坐标原点),则
以上命题正确的是( )
A.②③④B.①④
C.①③D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设多个分支机构,需要国内公司外派大量后、后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从后和后的员工中随机调查了位,得到数据如下表:
(1)根据调查的数据,是否有以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;
(2)该公司举行参观驻海外分支机构的交流体验活动,拟安排名参与调查的后、后员工参加.后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为;后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为,求的概率.
参考数据:
(参考公式:,其中).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com