精英家教网 > 高中数学 > 题目详情

【题目】在底面是菱形的四棱锥中,.

1)证明:平面

2)点在棱.

①如图1,若点是线段的中点,证明:平面

②如图2,若,在棱上是否存在点,使得平面?证明你的结论.

【答案】1)证明见解析;(2)①证明见解析;②存在,证明见解析

【解析】

1)首先根据题意得到是等边三角形,根据勾股定理得到,再根据线面垂直的判定即可证明平面.

(2)①根据三角形中位线即可得到,再根据线面平行的判定即可证明平面.②存在中点,使得平面,取中点,连结.根据三角形中位线即可得到,即平面平面,再利用面面平行的性质即可得到平面.

1)在菱形中,

是等边三角形.

,故菱形边长为

中,,则

同理.

平面.

2)①连结,连接.

在菱形中点又是线段的中点,

所以.

.

②存在,中点.

中点,连结.

中点,则

又∵,∴.

同理.

又∵

所以平面平面

平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),若以直角坐标系中的原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为为实数.

1)求曲线的普通方程和曲线的直角坐标方程;

2)若曲线与曲线有公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,取得极值,求的值并判断是极大值点还是极小值点;

当函数有两个极值点,且时,总有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+)+cos(2x﹣)+cos2x﹣sin2x,xR.

(1)求函数f(x)的最小正周期及单调递增区间

2)求函数fx)在区间[﹣]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】①回归分析中,相关指数的值越大,说明残差平方和越大;

②对于相关系数越接近1,相关程度越大,越接近0,相关程度越小;

③有一组样本数据得到的回归直线方程为,那么直线必经过点

是用来判断两个分类变量是否有关系的随机变量,只对于两个分类变量适合;

以上几种说法正确的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面四边形MNPQ中,MNMP=1,MPMNPQQM

Ⅰ)若PQ,求NQ的值;

Ⅱ)若∠MQN=30°,求sinQMP的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次演唱会上共10 名演员(每名演员都会唱歌或跳舞),其中7人能唱歌,6人会跳舞.

1)问既能唱歌又会跳舞的有几人?

2)现要选出一个2人唱歌2人伴舞的节目,有多少种选派方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.

优秀

非优秀

总计

甲班

10

乙班

30

总计

105

已知在全部105人中随机抽取1人为优秀的概率为.

(1)请完成上面的列联表;(把列联表自己画到答题卡上)

(2)根据列联表的数据,若按95%的可靠性要求,能否认为成绩与班级有关系”?

参考公式:

P(K2k0)

0.10

0.05

0.025

0.010

k0

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,满足,数列满足,且.

1)求数列的通项公式;

2)求证:数列是等差数列,求数列的通项公式;

3)若,数列的前项和为,对任意的,都有,求实数的取值范围.

查看答案和解析>>

同步练习册答案